
How to render Neural Fields more realistic

Axel Hutt, Meysam Hashemi, Peter Beim Graben

To cite this version:

Axel Hutt, Meysam Hashemi, Peter Beim Graben. How to render Neural Fields more realistic.
2014. <hal-01007681>

HAL Id: hal-01007681

https://hal.inria.fr/hal-01007681

Submitted on 17 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
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How to render Neural Fields more realistic

Axel Hutt and Meysam Hashemi and Peter beim Graben

1 Introduction

Complex systems are omnipresent in nature. They exhibit multiple spatial and

temporal scales whose understanding and control is one of the most challenging

problems of research for the last centuries. The notion of complexity is not well-

defined [1], but typically a system is said to be complex if, in addition to the mul-

tiple scales, there exist self-organised sub-units in the system which are generated

by smaller units. In many biological systems, climbing this hierarchy from smaller

units to larger units implies increasing the spatial and temporal scale.

Before discussing neural systems, we would like to clarify a major scientific

problem in this context: the choice of the description level. Let us assume the task

to describe a water wave mathematically, i.e., derive a mathematical model whose

solution describes the spatiotemporal phenomenon of a wave. Some researchers may

ask: we want to understand how water works, and especially, how a wave is gener-

ated. Hence, a straightforward simple and fundamental approach is to take a closer

look at the building blocks of water (remark : this is very similar to the way how

biologists work in neuroscience today). The researchers find H2O-molecules, study

the properties of the atoms and the inter-molecule interactions like hydrogen bridges

and van-der-Waals bounds. Now, to describe a water wave, one has to study millions

and millions of these molecules and their interactions. To this end, the researchers

Axel Hutt

INRIA CR Nancy - Grand Est, Team Neurosys, Villers-les-Nancy, France, e-mail:

axel.hutt@inria.fr

Meysam Hashemi

INRIA CR Nancy - Grand Est, Team Neurosys, Villers-les-Nancy, France, e-mail:

meysam.hashemi@inria.fr

Peter beim Graben

Dept. of German Studies and Linguistics, Humboldt-Universität zu Berlin and Bernstein Center

for Computational Neuroscience, Berlin, Germany e-mail: peter.beim.graben@hu-berlin.de

1



2 Axel Hutt and Meysam Hashemi and Peter beim Graben

take the reasonable approach to start simulating two, three, then and even hundreds

of these molecules. The numerical analysis is demanding, but still there is no de-

scription of the water waves, since the system appears to be so complex taking into

account all the different interactions of molecules and the research in this hard task

got stuck in some way.

Of course it is well-known that it is not necessary to study single molecules to

describe water waves, today we take the famous Navier-Stokes equation (NSE)

which includes the solution for this phenomenon. This equation involves mean fluid

properties, e.g., inner friction and viscosity [2]. Hence the NSE considers average

properties of interacting single molecules. In other words, it does not know sin-

gle molecules, but provides a powerful description of a large ensemble or mass of

molecules. It allows to describe several different rather complex fluid phenomena,

but of course no phenomena related to single molecules. Hence the NSE equation

provides a very good mathematical description of the system at a macroscopic de-

scription level only. Going back to the intended description of water waves by a

single molecule study, this approach is not reasonable, probably it will not lead to

a good description level of macroscopic phenomena and hence it is not constructive.

In todays’ neuroscience, the approach of linking single neuron activity to macro-

scopic phenomena is attractive, e.g. in the context of cognition [3–5], sleep [6] or

anaesthesia [7,8]. These studies state a relationship between the single neuron activ-

ity (microscopic scale) and behavioral phenomenon (macroscopic scale). However,

to our best knowledge it is not understood how the different experimental findings

on different scales are linked to each other, i.e., the link between the two scales is

not understood and no model linking the scales has been developed yet. This situa-

tion resembles closely the water wave task described above: it is clear that there is a

relation between small sub-units (molecules or neurons) to large complex systems

units (water wave or cognition), since the dynamics of the large units is generated

by the sub-units, but a link appears to be too complex. Consequently, learning from

physics and the NSE, it is necessary to consider more abstract, intermediate models

whose elements are based on small sub-units properties but which allow to model

large unit phenomena. In other words, it is much more effective to consider meso-

scopic population models involving average properties of interacting neurons and

which allow to describe macroscopic experimental phenomena, such as Local Field

Potentials (LFP), encephalographic activity (EEG/MEG) or even behaviour. Promis-

ing candidates for such models are neural mass or neural field models. The present

book chapter discusses recent advances in these models rendering the standard neu-

ral population models more realistic.

The subsequent sections do not give a complete overview over the recent ad-

vances in the field, a recent excellent review article already provides this informa-

tion [9]. The present chapter first introduces briefly to two types of neural field

models. Then it gives some details of few selected extensions, always introducing

the neuroscientific problem by experimental data before presenting a mathematical

description of the phenomena described.
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2 Two classes of neural field models

2.1 Amari model

The first neural field models developed by Wilson and Cowan [10] and Amari [11]

are continuum limits of large-scale neural networks. Typically, their dynamic vari-

ables describe either mean voltage [11] or mean firing rate [10, 12] of a population

element of neural tissue, see also the excellent review article of Bressloff [9]. In

some subsequent sections we consider the paradigmatic Amari equation [11] de-

scribing the spatiotemporal dynamics of mean potential V (x, t) over a cortical d-

dimensional manifold Ω ⊂ Rd :

τ
∂V (x, t)

∂ t
=−V (x, t)+

∫

Ω
K(x,y)S[V (y, t)]dy+ I(x, t) . (1)

with the spatial synaptic kernel K(x,y) which defines the connectivity between site

y ∈ Ω and site x ∈ Ω . The transfer function S is nonlinear and typically of sigmoidal

shape. This model considers external inputs I(x, t), e.g., originating from other extra-

cortical populations and from external stimulation. The model (1) takes into account

a single synaptic time scale τ assuming an exponential synaptic response function.

However we point out that re-scaling of time allows to set τ = 1.

In general, the connectivity kernel K(x,y) fully depends on both sites x and y

reflecting spatial heterogeneity. If the connectivity solely depends on the difference

between x and y, i.e. K(x,y) = K(x− y), then the neural field activity does not de-

pend on specific spatial locations and hence is translational invariant. This case is

called spatially homogeneity [11]. If the connectivity even depends on the distance

between x and y only, i.e. K(x,y) = K(||x− y||), with ||x|| as some norm in Ω , then

the neural field is spatially homogeneous and isotropic [13].

Several extensions of the Amari model (1) are possible, such as the consideration

of finite axonal transmission speeds [14, 15], constant feedback delays [16, 17](see

also section 3), heterogeneity [18, 19] (see also section 4), spike-frequency adap-

tion [20], statistical properties of single neurons [21], the combination of several

brain areas [22], electromagnetic fields [23, 24] and many more [9].

Mathematically, Eq. (1) is an integro-differential equation. Spatially homoge-

neous (respectively isotropic) neural fields have been intensively studied in the liter-

ature due to their nice analytical properties [14, 15, 25, 26]. Moreover, these models

may be transformed to derive partial differential wave equations [25,27,28] for cer-

tain classes of synaptic kernels.

2.2 Robinson model

As mentioned at the end of the previous paragraph, under certain conditions integro-

differential equations may be transformed to partial differential equations. In the
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1990’s James Wright and David Liley started developing partial differential equa-

tion models for neural population activity [29]. Their work has inspired other teams,

e.g., Peter Robinson and colleagues, who developed a similar neural model which

has been proven to be very successful. This type of neural field model [30–32] is

based on a population-level model of a single thalamo-cortical module consisting of

excitatory (E) and inhibitory (I) cortical population, thalamic relay neurons (S), and

thalamic reticular neurons (R). The average soma membrane potential is modeled

by

Va(t) = ∑
b=E,I,R,S

h̄(t)⊗Ka,bφb(t − τa,b), a = E, I,S,R (2)

where ⊗ denotes temporal convolution and φb is the pulse firing rate of the pop-

ulation b. The constants Ka,b are the strengths of the connections from population

of type b to population of type a. The delay term, τa,b is zero for intra-cortical and

intra-thalamic connections and non-zero for thalamocortical or corticothalamic con-

nections [31].

The model assumes that only axons of excitatory cortical neurons are long

enough to emit axonal propagating pulses. Moreover, φE obeys the damped oscilla-

tor equation

DφE = S(Va), (3)

with the operator D

D =

(

1

γ

∂

∂ t
+1

)2

. (4)

In Eq. (2) h̄(t) denotes the mean synaptic response function

h̄(t) =
αβ

β −α

(

e−αt − e−β t
)

, (5)

where α and β are the synaptic decay and rise rate of synaptic response function,

respectively.

3 Delayed nonlocal feedback between populations

In neural fields, one might include delays in several ways. The finite axonal trans-

mission delay is proportional to the fraction of distance between two spatial loca-

tions and transmission speed and takes into account the finite propagation speed of

action potentials along axonal branches [33], or in more general terms, it considers

the finite-time interaction between two elements in a spatially extended system [28].

In addition, one could argue that delayed interactions happen on a single-neuron

scale between neurons and it is more reasonable to treat these inter-neuron delays

as a kind of effective delay [17,34]. This latter type of delay is constant. In addition

to these two delay types, the nonlocal feedback delay takes into account the finite

axonal transmission speed along axonal pathways between two brain areas. Since
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this axonal pathway has a finite defined length, the transmission delay is fixed and

hence also constant [16]. Variations of all these delay types may be considered by

distributed transmission speeds and/or distributed delays [15, 35]. The subsequent

paragraphs consider constant delays reflecting the finite transmission speed along

axonal branches between brain areas.

3.1 The primary sensory area in weakly-electric fish

To examine the neural decoding in weakly electric fish, Doiron et al. [36] had per-

formed an experimental in vivo stimulation study. A dipole was placed near the

skin of a fish to stimulate only a part of the receptive field. Figure 1 sketches the

experimental setup, the spike autocorrelation A(t) and the interspike interval (ISI)

histograms of a typical pyramidal cell response to a local and global stimulus. The

stimulus was temporal noise evoking spatially weakly correlated sensory receptor

activity for local stimulation and strong spatial correlations in the receptor dynamics

in case of the experimentally global stimulation. The global random stimulus evokes

bursting in the neuron activity whereas the local stimulus evokes a single principal

firing mode. This experiment raises the question how the spatial correlations in the

input stimulus interact with those imposed by the physiological system.

Fig. 1 Experimental setup and firing statistics of stimulation experiment [36]. In (a), the electric

skin stimulation is local (left panel) and induces a single main oscillation as seen in the spike

autocorrelation function A(τ) (center panel) and the corresponding histogram (right panel). In (b)

the stimulus was global inducing an additional oscillation mode. Taken from [36] by permission.

A rather simple population model considers the primary sensory areas in the

electro-sensory system of weakly electric fish [37], but similar configurations can

also be found in parts of the vertebrate brain [38]. The model sketched in Fig. 2 [39]
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is made up of the ELL, a layer of pyramidal cells driven by the primary receptors

that receive an external stimulus, and the higher area N p. These areas are spatially

coupled via a delayed topographic feedback with connectivity kernels Ken(x) and

Kne(x) which reflect connections from the N p(n) to the ELL(e) and vice versa,

respectively, see Fig. 2. The neurons in both populations have insignificant direct

couplings and the coupling from the ELL to N p is excitatory and delayed in time by

τ1, the coupling back to the ELL is inhibitory with delay τ2. Moreover, according

to the experimental setup in [36], the model considers excitatory spatiotemporal

stimuli I(x, t) to the ELL.

Fig. 2 Topography of the delayed feedback model. The plus and minus signs indicate the excitatory

and inhibitory connections, respectively.

The aim of the study is to learn more about the mechanism how to change the

principal oscillation frequency by the properties of an external stimulus. The model

considers spatiotemporal noise with a well-defined and adjustable spatial correlation

length. The population model [39] describes two coupled neural fields whose activ-

ities are strongly related to experimentally observable local field potentials [40].

Then the theoretical power spectrum in the ELL reads

P(ν) =
∫ ∞

−∞
R(ν , l)C̃(l)dl (6)

where R(ν , l) is the spectral response function and C̃(l) is the scaled Fourier trans-

form of the input correlation function. It turns out, that the power spectrum (6) does

not depend on the spatial scale of the feedback loop σ f and the input correlation

scale σi independently, but just depends on their ratio, called η . This finding reflects

the coupling of the spatial scale of the external input to the intrinsic spatial scale of

the system.

Figure 3 shows the resulting power spectra for two values of the spatial scale

ratio η . We observe that a small ratio η = σ f /σi ≪ 1 generates a spectral peak at

about 20Hz, whereas the large ratio η ≫ 1 generates a power peak at about 0Hz.

Hence retaining the topographic feedback but decreasing the input correlation func-

tion from large values of σi = σ f /η (global noise) to small values of σi (local noise)

switches the spectral peak, similar as observed experimentally by Doiron et al. [36].
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Fig. 3 Theoretical power spectrum computed for η = 40 (solid line) and η = 1/40 (dashed line).

Fig. 4 The response function R(ν , l) and the integrand of the power spectrum integral R(ν , l)C̃(l)
for (a,b) σi = 40σ f (global noise), (c,d) σi = σ f /40 (local noise). Taken from [39] by permission.

To understand this, Figure 4 shows the response function R(ν , l) and the inte-

grand R(νl)C̃(l) in the definition of the power spectrum (6). The response function

R and RC̃ have a single maximum at about 20Hz for global noise (Fig. 4(a,b)),

whereas R and RC̃ have two local maxima at 20Hz and 0Hz (Fig. 4(c,d)). Since the

peak of RC̃ at 0Hz is broader than the peak about 20Hz and the power spectrum is

the integral over R(l̃), cf. Eq. (6), the contribution of RC̃ to the power at 0Hz exceeds

the contribution at 20Hz yielding a strong peak at 0Hz.
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This result reveals that the spectral peak in Fig. 3 at 0Hz results from the selection

of one mode out of two possible modes at frequencies of 0Hz and 20Hz, whereas the

spectral peak at 20Hz is the only oscillation mode present in the system. The switch

between these two configurations depends on the spatial correlation of the stimulus

noise. These modes reflect activity subnetworks from which only one is engaged.

3.2 General anaesthesia

General anaesthesia is an important medical application in today’s hospital surgery,

but its underlying neural interactions is still a mystery. In the last decades, general

anaesthesia has attracted theoretical researchers [41–45]. Most theoretical studies

aim to explain signal features of electroencephalographic data (EEG) observed dur-

ing anaesthesia, such as the attenuation or enhancement of α−activity accompanied

by a subsequent enhancement of δ−activity while increasing anaesthetic concentra-

tion [46, 47], cf. Fig. 5. The subsequent paragraphs show how neural field models

Fig. 5 The power spectra measured in frontal EEG electrodes in the absence of anaesthesia (blue

line) and during propofol anaesthesia (red line) in a group of subjects (a) and for a single subject

(b). Taken from [30] by permission.

may explain on the power enhancement and the frequency shift of maximum power

while increasing the anaesthetic concentration.

To this end, we consider a derivative of the Robinson model introduced in sec-

tion 2.2 and introduce a new sigmoid function derived from properties of type-I

neurons [48]

S(Va) = F(Va,0)−F(Va,γ), (7)

with

F(Va,γ) =
Smax

2

(

1+ erf

(

Va −θ − γσ2

√
2σ

))

e−γ(Va−θ)+γ2σ2/2, (8)
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in which the parameter γ < ∞ takes into account the properties of type I-neurons,

Smax is the maximum population firing rate, θ is the mean firing threshold, and σ is

related to the standard deviation of firing thresholds in the populations.

External input to the system can be considered as a non-specific input to relay

neurons as

φN = 〈φN〉+
√

2κξ (t), (9)

where 〈φN〉 is its mean value and ξ (t) is Gaussian white noise of strength κ with

zero mean.

It is well-known that general anaesthetics (GA) bind directly to sensitive target

receptors. For instance, a large number of studies link the effect of many GAs to

altered function of the GABAA receptors. Recent clinical findings have revealed

several sites of elicited anaesthetic action of the anaesthetic propofol in the human

brain, e.g., propofol suppresses field potentials in the rat thalamus and cortex [49].

In detail, the anaesthetic propofol increases the decay time constant of synaptic

GABAA receptors, and hence increases the total charge transfer in these synapses

but not that of excitatory synapses [50]. To integrate physiological observations into

neural models such as the Robinson model detailed in section 2.2, the anaesthetic ac-

tion on synaptic receptors is modelled by α → α/p with p ≥ 1 leading to a decrease

of the decay rate constant α , or equivalently, an increase in decay time constant of

GABAA receptors [51]. The factor p = 1 reflects absent anaesthetic action, i.e, the

baseline condition. The model considers inhibitory synapses at excitatory neurons

(factor p1), and at inhibitory neurons (factor p2) and at thalamic relay neurons (fac-

tor p3).

To compute the power spectrum of the system, we consider the stationary state

of Eq. (2), which obeys dVa(t)/dt = 0 where Va is taken from Eq. (2). Increasing

the anaesthetic concentration, i.e. increasing the three factors p1, p2 and p3 changes

the stationary states dependent on the relation of these three factors, cf. Fig. 6. In (a)

the two lower stationary states collide to a single state whereas in (b) the two upper

states collide. This difference indicates two fundamentally different mechanisms

which may yield different power spectra.

The power spectrum characterises small fluctuations about this stationary state.

Assuming that excitatory activity generates the EEG, and by virtue of the specific

choice of external input to relay neurons, the power spectrum of the EEG depends

just on one matrix component of the Greens function [51] by

PE(ω) = 2κ
√

2π
∣

∣G̃1,3(ω)
∣

∣

2
. (10)

in which G̃1,3(ω) is a matrix element of the 4×4 matrix
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Fig. 6 The stationary states and the nonlinear gain dS/dV computed at the lowest stationary state

of pyramidal neurons VE subjected to the factor p2. (a), (b) p1 = p3 = 1+ 0.3(p2 − 1), (c), (d)

p1 = p2 = p3. We observe three states in (a) and (c) for p2 = 1 where (a) the two lower states

collide and (c) the two upper states collide. The center branch (dashed red) is linearly unstable,

whereas the other branches are linearly stable. For clarification, the lower branches are shown in

the insets. Parameters are Smax = 250Hz, Vth = 15mV, γ = 0.08mV and σ = 10mV.

G̃(ω) =
1√
2π









L̃ D̃
K11

−K1 −K2 −K3e−iωτ 0

−K4 L̃−K5 −K6 0

−K7e−iωτ 0 L̃ −K8

−K9e−iωτ 0 −K10 L̃









−1

(11)

with L̃ = (1 + iω/α)(1 + iω/β ), D̃ = (1 + iω/γ)2, and the constants Ki, i =
1,2, ...,11 are proportional to the synaptic strengths and the nonlinear gains ∂S/∂V

computed at the stationary state of the system.

Figure 7 shows the theoretical power spectrum PE in the baseline condition and

after the administration of propofol for two different relations of the anaesthetic

factors p1, p2 and p3. At first we note that the spectra resemble well the spec-

trum obtained from experimental observations: increasing p2 in a specific relation

to the p1 and p3 yields increases in delta and theta power as well as more pro-

nounced alpha oscillation with increased peak-frequency. The dynamical analysis

of the model [30] reveals three resonances in the baseline condition, including an

oscillatory resonance corresponding to the peak in the alpha-band and a pair of

zero-frequency resonances. Increasing the anaesthetic concentration diminishes the
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damping rate of alpha resonances (and hence increases its magnitude) while its fre-

quency increases. Hence increases in alpha power and its peak-frequency results

from the approach of the system of an oscillatory instability [52]. Moreover, the two

zero-frequency resonances collide and gradually increases in frequency leading to a

magnitude increases in delta and theta power (solid red line in Fig. 7.)

Fig. 7 Theoretical power spectrum in the baseline condition (p1 = p2 = p3 = 1.0 encoded in blue)

and in the anesthesia condition (red line). (a) p1 = p3 = 1+ 0.3(p2 − 1) and p2 = 1.15 (red line)

and (b) p1 = p2 = p3 = 1.15 (red line).

Summarizing, previous studies [30, 51] have revealed the differential role of

synaptic inhibition at GABAergic receptors located on the dendrites of different neu-

ral types. Moreover, synaptic potentiation within local cortical inhibitory neurons

suffices to reproduce experimental observation in EEG during anesthesia [30, 52].

4 Heterogeneous neural fields

Previous experimental studies on the structure of biological neural networks and

their connections, e.g., as the exciting work of Hellwig [53], reveals a large rather

simple mesoscopic structure at the spatial scale of several hundreds of micrometers

with an underlying more complex structure at smaller scales. For instance, [53] re-

veals a rather homogeneuous Gaussian or exponential connectivity distribution of

single neurons in layers II and III in rat visual cortex on a scale of ∼ 500µm with an

overlying complex connectivity structure at much shorter scales reflecting hetero-

geneous connections. Hence, a homogeneous model serves as a first approximation
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at larger spatial scales, whereas heterogeneous connections need to be considered in

more realistic models.

Several previous theoretical studies have investigated the effect of heterogeneous

connections in neural fields, primarily in the context of pattern formation [54–58].

Most of the previous studies consider the heterogeneous fields as small heteroge-

neous perturbations of homogeneous states. The subsequent paragraphs show a new

approach taking into account the heterogeneous structure not as a limit of the ho-

mogeneous case.

Starting from the Amari equation (1), we expand the integral into a power series

[19]

∂V (x, t)

∂ t
+V (x, t) (12)

=
∫

Ω
K1(x,y)V (y, t) dy+

∫

Ω

∫

Ω
K2(x,y,z)V (y, t)V (z, t) dy dz ,

where the kernels K1 and K2 have to be reconstructed from experimental data.

Event-related potentials

In order to illustrate this, we combine a recently developed technique for non-

linear data analysis [18] with our new method for training heterogeneous neural

fields [19] [19]. Figure 8 shows the grand average event-related potentials (ERP)

Un(t), n = 1 . . . ,N of N = 25 recording electrodes from a language processing ex-

periment of subject-object ambiguities in German [59]. The first column displays

the control condition with a canonical subject-verb-object order: “Die Rednerin hat

den Berater beim Kongress gesucht” (“The speaker has sought the advisor at the

congress”), while the second column (Fig. 8(e –h)) shows ERPs for a non-canonical,

yet in German grammatical, object-verb-subject order: “Die Rednerin hat der Be-

rater beim Kongress gesucht” (“The speaker has been sought by the advisor at the

congress”). The panels (a) and (b) in the first row of Fig. 8 present the ERPs aver-

aged over 14 subjects elicited by the disambiguating article “den” vs. “der” at time

zero. Each trace shows the voltage of one of N = 25 EEG electrodes. Comparing

panels (a) and (b) in Fig. 8, one recognises a difference between conditions at about

600ms after onset of the critical stimulus, known as the P600 ERP component.

Heteroclinic orbits

To analyze these spatiotemporal ERP patterns we apply our recently developed re-

currence domain segmentation technique [18] whose results are shown in Fig. 8(c)

and (d). This method computes the recurrence plots from the N-dimensional trajec-

tories of each condition using a ball-size ε > 0 as parameter. Here, we optimized ε
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Fig. 8 Experimental event-related potentials (ERP) [59] in two experimental conditions (left and

right column) and their interpretation as heteroclinic orbits. (a,b) ERPs of N = 25 single EEG

time series, (c,d) temporal sequence of extracted recurrence domains, (e,f) the spatial EEG activity

distributions on the scalp (ERP components, seen from above, nose on top, back of head on bot-

tom of the maps) averaged over the time windows of recurrence domains shown in panels (c,d),

projections of the multivariate EEG signal (shown in panels (a,b)) on the corresponding ERP com-

ponent maps (shown in panels (e,f), (g,h) sequence of heteroclinic saddles (SHS) modeled by the

Lotka-Volterra model.

according to a reasonable heuristics for obtaining a relatively low number of recur-

rence domains with relatively long dwell times and good (visual) discrimination of

conditions which worked quite well for ε = 1.9µV . Following [18], the recurrence

plots are interpreted as rewriting grammars to replace large time indices by lower,

recurrent, ones. These transformed time indices are plotted in Fig. 8(c) and (d) as

different colors. The processing differences between conditions are clearly seen as

different segments, indicating that ERP components, such as the P600, can be re-

garded as recurrence domains, or, in first approximation, as saddle nodes [60, 61].

These saddles are estimated in Fig. 8(c) and (g) as follows: For each segment k of

Fig. 8(c) and (d) we compute its center of gravity, i.e. its temporal average, to obtain

a spatial EEG activity distribution on the scalp, namely a spatial voltage distribution

Uk(z), k = 1 . . . ,P with number of segments P and where z is the spatial location on

the scalp. The patterns Uk(z) are activity patterns extrapolated in space on the basis

of the average ERP components which are discrete in space. They are shown in Fig.

8(e) and (f).

These distributions are assumed to originate from underlying neural patterns embed-
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ded in neural populations, e.g. sub-networks in neural populations. These underly-

ing corresponding neural patterns may be called Vk(x). Let us call V (x, t) the neural

population activity generating the EEG signal. Then the Moore-Penrose pseudoin-

verses Vk(x)
+ of Vk(x) form a bi-orthogonal basis with the patterns Vk(x), such that

the projections

ξk(t) =
∫

Ω
Vk(x)

+V (x, t)dx

serve as order parameters in a decomposition

V (x, t) = ∑
k

ξk(t)Vk(x) .

The ξk(t) are plotted in Figs. 8(g) and (h) where each trace depicts the projection

onto one segment from the recurrence domain analysis in Figs. 8(c) and (d).

The dynamics of the order parameters {ξk} is of high temporal complexity, in-

dicating that a large number of time scales is involved in the ERP language pro-

cessing dynamics. However, in a first approximation we assume that the recurrence

domains are in fact isolated saddles that are connected along stable heteroclinic se-

quences (SHS). This can be modeled through winnerless competition in a network

of Lotka-Volterra populations [62,63]. This assumption leads to the order parameter

dynamics shown in 8(g,h). From the growth rates σk > 0, and interaction weights

ρk j > 0, ρkk = 1, of the Lotka-Volterra dynamics and from the bi-orthogonal pattern

systems Vj(x),Vk(x)
+, one can construct the kernels of the neural field equation (12)

as

K1(x,y) = ∑
k

(σk +1)V+
k (y)Vk(x)

K2(x,y,z) = ∑
k j

ρk jσ jV
+
k (y)V+

j (z)Vk(x) ,

We observe that the kernel K1(x,y) describes Hebbian synapses between sites

y and x trained with pattern sequence Vk [19]. Interestingly, this memory storage

mechanism resembles well the storage of patterns in a Bidirectional Associative

Memory (BAM) [64].

Moreover, to our best knowledge the three-point kernel K2(x,y,z) has not been stud-

ied yet in the context of neural fields. It further generalizes Hebbian learning to

interactions between three sites x,y,z ∈ Ω . Interestingly, one can write

K1(x,y) = ∑
k

(σk +1)K1,k(x,y)

K2(x,y,z) = ∑
j

[

∑
k

ρk jK1,k(x,y)

]

σ jV
+
j (z) .

with K1,k(x,y)=V+
k (y)Vk(x). According to Eq. (13) the three-point kernel can be see

as a linear superposition of two-point kernels weighted by the interaction weights

ρk j and the underlying stored patterns V+
j (z) and its corresponding growth rates σk.
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The additional dependence of the spatial location z is reasonable in heterogeneous

fields: the action at spatial location x does not only depend on the activity in spa-

tial location y (as assumed in homogeneous systems), but may also depend on the

path between x and y which in turn depends on the underlying memory structure.

This argument motivates the presence of an additional spatial variable z, but does

neither explain the terms in K2(x,y,z) nor its dependence on the specific choice of

the heteroclinic dynamics (here a Lotka-Volterra system). Future work will attempt

to elaborate more details on the presence of three-point kernels.

5 Conclusion

This chapter has presented some theoretical neural field studies describing the power

spectra in homogeneous neural fields and the nonlinear dynamics in heterogeneous

neural fields. In this context, we want to mention recent extensions of standard neu-

ral field models by incorporating single neuron properties [48, 65–67].
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