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Effect of duration of synaptic activity on spike rate of a Hodgkin-Huxley neuron
with delayed feedback
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A recurrent loop consisting of a single Hodgkin-Huxley neuron influenced by a chemical excitatory delayed
synaptic feedback is considered. We show that the behavior of the system depends on the duration of the activity
of the synapse, which is determined by the activation and deactivation time constants of the synapse. For the fast
synapses, those for which the effect of the synaptic activity is small compared to the period of firing, depending
on the delay time, spiking with single and multiple interspike intervals is possible and the average firing rate can
be smaller or larger than that of the open loop neuron. For slow synapses for which the synaptic time constants
are of order of the period of the firing, the self-excitation increases the firing rate for all values of the delay time.
We also show that for a chain consisting of few similar oscillators, if the synapses are chosen from different
time constants, the system will follow the dynamics imposed by the fastest element, which is the oscillator that
receives excitations via a slow synapse. The generalization of the results to other types of relaxation oscillators
is discussed and the results are compared to those of the loops with inhibitory synapses as well as with gap
junctions.
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I. INTRODUCTION

A very crucial step in the study of complex collective
phenomena in large networks is to investigate the behavior of
the few component circuits known as the network motifs, since
some of these microcircuits are known to be the building blocks
of the large networks [1]. Among the most prevalent motifs
as the basic microcircuits constructing recurrent networks are
loops and chains [2,3]. Recurrent networks are known as base
structures for creating short- and long-term memory [4]. An
elementary preparation for the study of chains is a one element
loop with fixed delayed feedback stimulation. This simple
model can explain the behavior of a neuron with autaptic
self-connection [5] and also is useful for understanding the
more complex loops consisting of several elements which are
more frequent in the neural systems [6].

Delayed self-communication is of particular interest as
its regulatory role in nature and technology [7]. Excitable
gene regulatory systems [8], eye movements [9], human
balance [10], and optically communicating semiconductor
lasers [11,12] are a few examples. In neural communica-
tion, due to the finite speed of the data transfer in the
axons and dendrites, and possible processing latency in
the synapses, communicating between the different areas
may take delays from few to hundreds of milliseconds, so
significant, compared to the time scales of the neuronal
activities [13,14].

A delayed feedback has a nontrivial impact on the dynamics
of the nonlinear oscillators. With delayed feedback, more
complex dynamics are likely to occur due to the infinite
dimension of the dynamical system [15]. Multistability and
chaos are two widely reported effects of the delayed feedback
both in theoretical studies [16,17] and in experiments on
neurons [18] and on laser oscillators [19]. On the other hand,
self-stimulation with fixed delay time can suppress chaos and
induce order in the dynamics of the nonlinear oscillators [20].
For ensembles of oscillators, a mean-field delayed feedback
is proposed to control synchronization, i.e., it can either result

in increase or destroy the coherence of the systems of coupled
oscillators [21,22].

Multistability induced by the delayed feedback poses the
loops as the systems with memory [16]. In neural systems,
delayed feedback has been proposed to be responsible for
precise firing of basket cells in hippocampus during Theta and
Gamma rhythms. Experiments show that delayed recurrent
excitations are capable of regulating the structure of the
interspike intervals in the presence of noise [5]. An early
experimental study of the pacemaker cells of crayfish [23]
followed by numerical studies led to the deduction that
delayed self-coupling besides neuronal adaptation can result
in bursting, high frequency discharges interrupted by relatively
long quiescent intervals [24]. It was argued that the effect of
self-excitation has been to increase the firing rate during the
bursts where a reduction of excitability during high activity
drives the neuron in the quiescent interval [24]. Later it was
shown that for small strength of self-coupling both acceleration
and deceleration of neuronal activity are possible. It has been
argued that existence of unstable fixed points in the phase
space of the system are responsible for the slowing down of
an oscillator activity with self-coupling [25].

In this paper we first study the dynamics of single neuron
when it is influenced by a delayed self-coupling and then
will show how the results can be generalized to neuronal
loops with more than one neuron. Both one and two neuron
loops appear as the basic blocks for canonical arrangements
proposed as a possible explanation for the distant isochronous
synchronization in the brain [2,26]. A similar arrangement
with a thermally sensitive neuron has been studied with
the emphasis on the effect of feedback on the frequency
and amplitude of sustained subthreshold oscillations [27].
Also both the single element loop with an optical delayed
feedback or the chains of semiconductor lasers as the nonlinear
oscillators has been widely studied [11,12].

We have considered the Hodgkin-Huxley (HH) model as
a generic model for excitable and oscillating membranes but
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the results have been argued to be qualitatively general for all
the relaxation oscillators, e.g., FitzHugh-Nagumo oscillators,
while they inherit the type of excitability of the HH model. A
quantitative characterization of the response of the model can
be achieved by considering phase-reset curves (PRCs), which
are related to the type of excitability of the oscillator [28]. The
curves determine how inputs to an oscillator shift its timing
or phase and are characterized by the type of the bifurcation,
which changes the system from excitable to oscillatory [29].
Infinite period (saddle node on invariant circle) bifurcation
leads to type-I PRCs, which are mainly positive while type-II
PRCs with a large negative region are characterized by Hopf
bifurcation [29]. The Hodgkin-Huxley model with the classical
parameters is known as a type-II excitable system and we see
that the response of the feedback system is retained while a
type-II oscillator is considered.

Most of the previous studies on the effect of the self-
stimulation on the neurons have been done with a linear self-
coupling, which determines a gap junction [16,27]. Here, by
considering a chemical self-coupling, we aim to study the ef-
fect of the duration of the activity of the synapse on the behav-
ior of the model. For excitatory chemical synapses, AMPA re-
ceptors show a fast action to the release of glutamate, activating
in tens of microseconds and deactivating in a few milliseconds.
Instead, the activating time of NMDA receptors is of order
of milliseconds where deactivating times range from tens to
hundreds of milliseconds [30]. This wide range of activity time
of synapses brings up the question of how the effect of feedback
may be dependent on the time constants of the synapse, i.e., the
duration of the synaptic activity. While the main body of our
study focuses on how the average rate of firing is influenced
by the synaptic feedback with different time constants of
activation and deactivation, the dependence of the interspike
intervals (ISIs) to these parameters is also investigated.

The HH model with an external current input shows two
successive bifurcations: a saddle-node bifurcation of limit
cycles and an inverse Hopf bifurcation [31]. In this study, the
open loop neuron has been assumed to be in a bistable state
between two bifurcations where both a limit cycle and a stable
fixed point are present in the phase space of the model. We
have also considered the case in which the open loop neuron
is excitable near the first bifurcation point and also comment
about what is expectable if the only attractor of the system
is the limit cycle. Some of the results are compared with the
loops with inhibitory synapses and also with gap junctions.

The paper is organized as follows: in subsequent section we
describe the model equations and parameters, Sec. III governs
the main results for a single element loop, and in Sec. IV
the results have been presented for the chains with more than
one neuron. In Sec. V using the characteristic diagram of
the neuron, we show how the firing rate of the neuron may
be entrained by the feedback loop. Section VI is devoted
to the conclusion and in the Appendix, phase reset curves
of the models used in the paper are given.

II. MODEL

The HH model serves as a paradigm for real spiking neurons
based on the dynamic conductance of ion currents [32]. We

FIG. 1. A recurrent loop consisting of a single neuron (a) and two
neurons (b).

consider a HH neuron with a self-stimulation (see Fig. 1)
whose membrane voltage is described by

c
dv

dt
+ INa + IK + Il + Isyn = Iext. (2.1)

c is the capacitance per unit area of the membrane, which
is taken as 1 μF/cm2 and Iext stands for the external
current. Il = gl(v − El) is the passive leak current and INa =
gNam

3h(v − ENa) and IK = gKn4(v − EK ) are sodium and
potassium currents, respectively. gl = 0.3 mS/cm2 is the
conductance for the leak current and gNa = 120 mS/cm2

and gK = 36 mS/cm2 are the maximum conductance for
the sodium and potassium ions, and El = 10.6 mV, ENa =
115 mV, and EK = −12 mV are reversal voltages for the leak,
sodium, and potassium currents, respectively. m (h), activation
(inactivation) variable of sodium, and n, activation variable of
potassium, obey the differential equations

dm

dt
= αm(1 − m) − βmm,

dh

dt
= αh(1 − h) − βhh, (2.2)

dn

dt
= αn(1 − n) − βnn,

where α and β are functions of membrane voltage as can be
found in [32].

To model the electrical synapses, a linear coupling is used
after modulating by a threshold function f (v − vth),

Isyn = −gelv(t − τ )f (v − vth), (2.3)

in which a hard threshold function f (x) = 1/2[1 + tanh(ηx)]
is taken with η = 10, and the threshold voltage vth = 20 mV
ensures that subthreshold oscillations are not delivered to the
gap junction [33]. gel is the synaptic conductivity and τ is the
loop delay time.

With a chemical synapse the feedback synaptic current is
described by Isyn = gsyns(t − τ )(v − Esyn) where gsyn is the
synaptic maximum conductivity, Esyn is the synaptic reversal
potential, and τ is the delay of the feedback loop. s(t) is the
synaptic activity function defined via

ds

dt
= αf (v − vth)(1 − s) − βs, (2.4)

with α and β defining the activation and deactivation time con-
stants, vth = 20 mV is the threshold voltage for the activation
of the synapse, and f is the threshold function as defined in
the text following Eq. (2.3) [33].
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The parameters we have chosen are such that with Iext = 0,
the resting potential of the neuron is zero; so we have
taken Esyn = 80 mV for excitatory neurons and Esyn = 0 for
inhibitory neurons. Inspired by typical time constants of the
activation and deactivation of excitatory synapses with AMPA
and NMDA receptors, we have chosen α = 10 and β = 0.5 as
the activation and deactivation time constants for fast synapses,
and α = 1 and β = 0.05 for modeling slow synapses [30].

We also use the FitzHugh-Nagumo (FN) model [34] as
a prototype for relaxation oscillators. To model a type-II
excitable system we use

dv

dt
= v − v3/3 − w − Isyn + Iext,

(2.5)
dw

dt
= 0.08(v + 0.7 − 0.8w),

with the v and w as the fast (voltage) and slow (recovery)
variables, respectively. The synaptic current is again described
by Eq. (2.4) but since the spikes in the FN model have
different amplitudes, the synaptic voltages for the excitatory
and inhibitory neurons are Esyn = 1.2 and Esyn = −1.2,
respectively.

Also a variation of the FN model,

dv

dt
= v − v3/3 − w − Isyn + Iext,

(2.6)
dw

dt
= 0.08[2.5 + 2.5 tanh(ηv) − w],

is used to describe a system with type-I excitability. v and
w and the synaptic current have the same interpretation as in
Eq. (2.5). The model without feedback shows an infinite period
bifurcation in Iext = 2/3 when η � 1 [35].

Phase reset curves of the three models introduced above are
given in the Appendix. In what follows, when it is not explicitly
noted, the voltage, current, and conductivity are measured in
mV, μA/cm2, and mS/cm2, respectively, with time in ms and
firing rates in ms−1.

III. EFFECT OF THE DELAYED FEEDBACK
LOOP ON THE FIRING RATE

In Fig. 2(a), we have shown the average firing rate of the HH
neuron vs the delay time τ for fast and slow excitatory synapses
for the case where the neuron is biased over the threshold
such that a limit cycle coexists with a stable fixed point [31].
It can be seen for the slow synapses that the feedback loop
always increases the firing rate of the neuron whereas for a
fast synapse, the effect of the self-synapse is dependent on
the delay time. When the loop synaptic pulse arrives in the
neuron around the odd multiples of the half period of firing of
the open loop neuron (intrinsic period), i.e., τ ∼ (2j + 1)T/2
with T being the period of firing of the open loop neuron,
the excitatory feedback loop with fast synapse decreases the
firing rate and may even suppress the firing. It is also clear
that adding multiples of the intrinsic period of the neuron
to the delay does not result in the similar behavior. For the
fast synapses, the effect of the larger delays is weaker than
the delays below the intrinsic period, i.e., the variation of the
firing rate with respect to open loop firing is smaller for larger
delays. For slow synapses, dependence of the firing rate on
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FIG. 2. (a) Mean firing rate of the HH neuron vs loop delay
time with an excitatory feedback for the fast (gray) and slow (black)
synapses. gsyn = 0.05, β = 0.5, and α = 10 for fast and β = 0.05
and α = 1 for slow synapses. The horizontal and vertical dashed lines
show the intrinsic rate of firing (without feedback) and the multiples
of intrinsic period of firing, respectively. The external current
Iext = 7μA/cm2 is imposed on the neuron as a step current is switched
on at t = 0. (b) and (c) show the interspike intervals (bifurcation
diagram) with fast and slow synapses respectively. The extra inclined
dotted lines in (b) are guides to the eye showing when there are ISIs
determined by the loop delay time. The equations have been integrated
for 2s and the first 200 ms are discarded to ensure that transient effects
do not disturb the results. The intervals between successive spikes are
recorded in the bifurcation diagram and the total number of spikes
divided by the integration time is the mean firing rate.

the delay time is nearly periodic but the period is less than the
intrinsic period of the neuron. This is evident as the leftward
shift of the maximum of the firing rate for slow synapses, with
respect to the vertical dashed lines, which indicates multiples
of the intrinsic period.

In Figs. 2(b) and 2(c), we have plotted interspike intervals
(ISIs) vs delay time, a bifurcation diagram [37] for the fast and
slow synapses, respectively. With slow synapses, the model
shows a single ISI for all the values of the loop delay time.
With fast synapses for the delay time larger than T , three
behaviors are recognizable: for delay time near and greater than
multiples of the intrinsic period, the ISIs are not considerably
different from intrinsic period, i.e., the feedback loop has a
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minor effect on the neuron since all the feedback pulses arrive
in the neuron in the refractory period. For delay time near
and less than multiples of the open loop period, the effect of
the feedback pulses is a notable decrease of the period of the
firing. The interesting behavior is observed when the delay
time is about odd multiples of the half period of firing of the
open loop neuron τ ∼ (2j + 1)T/2. In this case the ISI can
take each of the two time constants present in the system: the
intrinsic period of the firing of the open loop neuron and the
loop delay time. The synaptic activity here consists of groups
with two or more pulses, where just one of them leads to an
action potential. A simple explanation for this observation is
that for each couple of pulses kicking the neuron via feedback
loop, one of them arrives in the refractory period and has no
effect on the system. Note that this behavior can be seen when
the delay time is more than the intrinsic period of the neuron
not considered in [25]. It is also notable that each transition
between the states with single ISI and multiple ISIs coincides
with an abrupt change of firing rate in Fig. 2(a).

We also explain how the feedback pulses from fast synapses
can stop the firing when the delay time is smaller than the
intrinsic period, while for large feedback times the firing is not
stopped (Fig. 2). In Fig. 3 we have shown the time evolution
of the membrane voltage for the system with fast synapse,
for three values of delay which differ in one intrinsic period
time. A planar representation of the reduced phase space is
also given retaining the voltage v and recovery variable n. As
mentioned before, for the value of the current input we used,
the HH neuron shows bistability as a result of coexistence
of a stable limit cycle with a stable fixed point. In Fig. 3(a)
the pulse suppresses the spiking by sending the phase point
to the domain of attraction of the stable focus. This domain
is determined by the unstable limit cycle, which is born with
the stable limit cycle in a saddle-node bifurcation of limit
cycles [31]. For the delay larger than the intrinsic period,
before the delayed feedback pulse arrives in neuron, the neuron
fires an extra action potential. Hence the action potentials and
delayed feedback stimulations are of the form of doublets,
with ISI equal to intrinsic period, separated by loop delay time
[Fig. 3(b)]. When the first pulse of the doublet sends the system
to the basin of attraction of the focus, the second can shoot the
system orbit out of the basin and lead to an action potential
as can be seen in Fig. 3(b). Yet, small amplitude oscillations
around the focus lag the next spike and reduce the rate of the
firing. This scenario is also repeated by the triplets when the
delay time is larger than twice the intrinsic period [Fig. 3(c)].

For an electrical synapse, since both activation and deac-
tivation are instantaneous, we expect the results to be more
similar to those of the fast chemical synapse. As we see in
Fig. 4(a), dependence of the firing rate on the loop feedback
delay has similar features as the fast chemical synapse but
the bifurcation diagram shown in Fig. 4(b) shows different
behavior compared to Fig. 2(b), e.g., with electrical synapse
aperiodic states are seen for loop delays larger than the intrinsic
period. Although for the parameters we have chosen, the two
diagrams are different, our arguments above do not rule out the
possibility of the similar behavior for a system with electrical
synapses. So whether such differences are generic or they can
be removed by a suitable choice of parameters is yet an open
question.
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FIG. 3. In (a)–(c) (left panels) the evolution of the membrane
voltage of the neuron (black) and the synaptic activity (gray) is
plotted for three values of delay τ = 7.5 ms, τ = T + 7.5 ms, and
τ = 2T + 7.5 ms, respectively, where T � 14.3 ms is the intrinsic
period of the neuron. The synaptic activity function is exaggerated to
be distinguishable and the interspike intervals for the doublets in (b)
and triplets in (c) are shown by left-right arrows. In the right hand side,
against each plot for (a)–(c), a reduced phase space representation
around fixed points of the system is given. The arrows in (b) and (c)
indicate the effect of the second excitatory pulse in the doublets and
triplets.

We have also checked the system with an inhibitory
synapse. As it is seen in Fig. 5, in this case the results for both
fast and slow chemical synapses are qualitatively similar, i.e.,
there is no increase of firing rate even when an inhibitory fast
synapse is assumed. Suppression of firing is what is naturally
expected to occur with inhibitory synapses; here we note that
inhibitory inputs via slow synapses may stop firing for a wider
range of loop delay time. The bifurcation diagram for such
a system [Fig. 5(b)] shows that the inhibitory feedback loop
with fast synapses does not lead to multiple ISIs as it had been
seen for fast excitatory synapses. This result is worth noting,
since it seems the loop delay time cannot be revealed in the
dynamics of the system, as we will see also in Sec. V.

Since the effect of the synaptic feedback on the firing rate
is dependent on the behavior of the system near the limit cycle
and equivalently on the type of the excitability, it is expected
for simplified models which inherit the main properties of the
HH phase space to show similar behavior as the HH model
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FIG. 4. (a) Mean firing rate and (b) interspike intervals of the HH
neuron vs loop delay time with a feedback via an electric synapse.
gel = 0.05 and the external current Iext = 7 μA/cm2 is imposed on
the neuron as a step current switched on at t = 0. The horizontal
dashed lines show the intrinsic rate of firing (without feedback) in (a)
and intrinsic period of firing in (b) and the vertical dashed lines show
the multiples of intrinsic period of firing.

for such study. A simple type-II model, which saves such
properties of the HH equations, is the FN model introduced
by Eq. (2.5) (see the Appendix). We repeated the study of
the ISIs, with type-II FN neurons: as seen in Fig. 6(a), the
behavior of the system under influence of the fast and slow
synapses is similar to those of the HH model, which supports
the arguments about the origin of the phenomenon. The main
difference is that firing death is not seen since, unlike the HH
system, here the open loop system is monostable with the limit
cycle as the only attractor. Such a behavior can also be seen
for the HH model if it is biased with a current by which the
system is not bistable and the stable fixed point has lost the
stability via inverse (subthreshold) Hopf bifurcation. There
are also regions of aperiodic firing for fast synapses where
the interspike intervals can take each value of a continuous
subset of all possible values both for type-I and type-II FN
oscillators [37].

We note in passing that for a type-I oscillator a decrease
in the firing rate does not occur for an excitatory fast synaptic
feedback. In Fig. 6(b) we have shown the bifurcation diagram
for a type-I system (Appendix) introduced by Eq. (2.6). While
the two systems in Fig. 6 show a similar response to the self-
excitation via slow synapses, fast synaptic feedback always
reduces the ISIs leading to larger firing rates for all the delay
times. Another notable difference is that the change in the
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FIG. 5. (a) Mean firing rate and (b) interspike intervals of the
HH neuron vs loop delay time with a feedback via a fast (black) and
slow (gray) inhibitory synapse. gsyn = 0.05, and Esyn = 0 to model
an inhibitory synapse and other parameters are the same as Fig. 2.
The horizontal dashed lines show the intrinsic rate of firing (without
feedback) in (a) and intrinsic period of firing in (b) and the vertical
dashed lines show the multiples of intrinsic period of firing.

intervals due to the fast synapses can exceed that of the slow
synapse for type-II oscillators. This is reasonable since a kind
of integration of the responses around the limit cycle is done
by the slow synapse and the response of the system for type-II
oscillators is negative in the regions of the limit cycle.

We end this section with a study of the behavior of the
system under the influence of the feedback when the open-loop
neuron is excitable, i.e., when it is biased slightly below the
threshold for repetitive spiking. The results are shown in Fig. 7
with the input current chosen as it causes a single spike at t = 0.
It is shown that the behavior of the system for both fast and
slow synapses strongly depends on the delay. It is expected that
the neuron remains inactive for small values of delay since the
feedback pulse arrives in the refractory period. The threshold
delay time for repetitive spiking decreases with increasing the
strength of the synapse. For larger value of delay there are
again regions with zero activity, arising from the existence of
subthreshold oscillation for the HH neuron. For the neurons
with sustained sub-threshold oscillations, it is known that exact
timing of the arrival of the feedback determines the behavior
of the neuron [27,38]. Here we see for damped subthreshold
oscillations that again the feedback timing is detected by the
neuron activity. The sensitivity of neuron in the after spike
oscillating period varies with the period of such oscillations
for both fast and slow synapses. If the neuron is in the minimum
of such oscillations, larger stimulation is needed to create an
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FIG. 6. Interspike intervals of a FN oscillator vs loop delay time
with a feedback via a fast (gray points) and slow (black thick line)
chemical excitatory synapse. In (a) and (b) the oscillators have been
chosen from type II and type I, as described by the Eqs. (2.5) and
(2.6), respectively. In both plots vth = −0.5, Esyn = +1.2 (excitatory
synapse) and gsyn = 0.1. External current is Iext = 0.35 in (a) and
Iext = 0.8 in (b). The horizontal dashed lines show the intrinsic period
of firing (without feedback) and the vertical dashed lines show the
multiples of intrinsic period of firing.

action potential and the feedback induced input may not suffice
to activate the neuron. We note here, for the HH model with
subthreshold oscillations, when there is no repetitive firing, the
period of these oscillations determines the intrinsic time scale
which with the feedback induced time constant determines the
behavior of the system. ISI plots in Fig. 7 show that although
the period of subthreshold oscillations influences the dynamics
of the neuron, the ISI is solely determined by the loop time
delay once the neuron is in the repetitive spiking state.

IV. TWO NEURON LOOPS

Van der Sande et al. showed that when the elements in
the loop evolve chaotically, with increasing the number of
oscillators in the ring configuration, the spectral properties of
the individual elements lose the fingerprint of the round trip
time [3]. Here we show that basic properties of the one element
loop discussed above is maintained in chains with more
neurons. In the simplest case, two neurons communicating
bidirectionally, as in Fig. 1(b), form a chain appearing in many
canonical circuits in neural systems [26].
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FIG. 7. (Color online) Interspike intervals of the neuron when it
is biased by a subthreshold step current Iext = 5 for a fast (a) and slow
(b) excitatory chemical synapse with the strength gsyn = 0.05. The
dotted lines again show the relation of ISI with the loop delay time.

Each of the two synapses present in the model can be chosen
to be fast or slow. When the communication in both paths
is done with similar, fast or slow excitatory synapses, it is
reasonable to expect the behavior of the system to be the
same as the one neuron loop with a fast or a slow synapse,
respectively. Our numeric results confirm this expectation. The
nontrivial result arises when the synapses are chosen from
different types: a fast and a slow synapse. Figure 8 shows the
results when all the parameters of the neurons are the same and
the round trip time is divided equally between the two paths.
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FIG. 8. Interspike intervals of two neurons interacting bidirec-
tionally in a loop via two chemical excitatory synapses of different
types: one fast and one slow. The horizontal axis shows round trip
time, which is divided equally between two paths. All the parameters
of the neurons and synapses are the same as in Fig. 2.
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Surprisingly the results are quite similar to those of the single
neuron loop with the slow synapse and the firing rate of both
neurons is always more than their intrinsic firing rates. We
have repeated the numeric tests with more than two elements
(e.g., four neurons) and it is seen that existence of one slow
synapse in the loop is enough to wash out the signature of
the fast synapses (discussed in Sec. III) and the whole system
shows the behavior which is expected from the single element
loop with a slow synapse.

From arguments in the previous section it can be deduced
that an input pulse, if lasts in time scales comparable with the
intrinsic period of the neuron, advances the next spike each
time they are imposed, regardless of where on the limit cycle
they begin to act. So in the two neuron system we considered
above, the one with slow afferent synapse tends to produce
spikes with a larger rate and acts as the faster element in the
loop. This fast oscillator goes on to determine the behavior of
the whole system when the number of the oscillators in the
loop increases. One should note here that each element of the
system is determined by the neuron itself plus its incoming
synapse, and with our choice of the same parameters for all
the neurons; the difference in the incoming synapse determines
which neuron is faster and has a leading role in the chain. Such
particular role of the fast elements in the system of coupled
oscillators has been reported for coupled integrate-fire systems
[39], in the chains of coupled Josephson junctions [40], and
also in brain research [41].

V. DELAY INDUCED RESONANT STEPS

If the open loop neuron is in the resting state, due to the
initial conditions, a strong enough feedback loop may excite
the neuron to fire repeatedly. In this case the feedback delay
determines solely the time constant of the activity of the system
as it is seen in Fig. 7. If we fix the delay time constant,
this fact will result in plateaus in the firing rate-input current
characteristic of the neuron, which can be called delay induced
resonant steps. In Fig. 9 we have shown such a characteristic
for the system with the electrical synapse and also with fast
and slow chemical synapses. It can be seen that all types of the
synapses may cause delay induced steps on the characteristic
firing rate determined by the delay time fd = 1/τ . Higher
order steps on the multiple of the fd can also occur but they
are smoothed and eventually disappear for the system with
slow synapses.

The appearance of the first step depends on the initial
condition; existence of a single action potential in the interval
[−τ,0] leads to the first step but the other steps can be seen
even if the neuron is in the rest state during the initial period.
In general, the order of the resonant steps is determined by the
number of the effective feedback pulses (those which result
in an action potential) in every time window equal to τ : on
the second step, before the feedback pulse arrives in neuron,
the neuron fires another action potential, which leads to the
doublets for each feedback period. Here despite what is shown
in Fig. 3(b), both the feedback pulses of doublets lead to
action potentials, resulting in a firing rate equal to 2fd and
so on for other existing steps. We just mention that such steps
are not seen in the characteristic of the system with inhibitory
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FIG. 9. Characteristics of the system, average firing rate of the
neuron vs input current is plotted for the open loop neuron (dashed)
and in presence of delayed feedback with (a) slow and (b) fast
excitatory synapses, and (c) with an electrical synapse. The time delay
is set by τ = 25 ms and the synaptic strength gel = gsyn = 0.05.

synapses; it is again worth noting that in such systems, the loop
time constant is not revealed when the feedback is inhibitory.

These steps are generic for all neuronal models, e.g., they
can be seen in the characteristic of a simple leaky integrate-
and-fire (LIF) neuron. For the simple model studied here, the
pulses produced by the neuron circulate in the loop and act as
a periodic input on the neuron itself where they can entrain the
dynamics of the neuron. Considering the effect of the delayed
feedback loop as an external periodic force brings the notion of
external synchronization [42] in which a nonlinear oscillator
is entrained by the external force. Such a phenomenon is well
known for the Josephson junctions as the Shapiro steps [43]
and also in the loops of coupled Josephson junctions, where the
excitations move along the loop as solitary waves, and serve as
an extra periodic force on the components of the system [44].

VI. CONCLUSION

Delayed feedback loops introduce a new time scale into the
dynamics of the system, determined by the circulation time.
In the neural systems with chemical synapses, the connections
remain active in the time scales, which may be comparable
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with the intrinsic time scales of the neurons and the delay
induced time scale. This opens the question of how the activity
time of the synapses influences the behavior of the coupled
neurons. In this work we addressed this question for the HH
neurons coupled in a chain. The results have been shown to be
applicable to the chains of the coupled relaxation oscillators,
which inherit the basic phase space properties of the HH
equations.

Defining fast and slow synapses in reference with the
intrinsic time constants of the neuron, for a single neuron loop
it was shown that different qualitative behaviors may arise in
the feedback system. Gómez et al. showed that with a small
strength self-excitation feedback both increase and decrease
of the firing rate is possible [25]. Here we showed that this
observation also depends on the duration of synaptic activity
and besides strong self-excitation, long duration of the synaptic
activity may also cover the fine structure properties of the
model phase space, i.e., feedback via a slow excitatory synapse
always speeds up the firing. On the other hand, decrease
of firing rate of the neuron can be seen when strength of
self-coupling is small and the activity time of the synapse is
short (compared to the period of the firing). This behavior is
related to the type of excitability of the HH model, which leads
to phase-reset curves with large negative regions.

We also investigated how the interspike intervals are
influenced by feedback. Again the nontrivial effects are seen
for the fast synapses: due to the circulation delay time, the
ISI of the open loop neuron may remain intact or change in
the presence of feedback; but an interesting phenomenon may
occur in which both the time scales of the open loop neuron
and the feedback delay appear in the dynamics of the neuron.
In this regime two subsystems of the neuron and the feedback
loop behave as noninteracting and both time scales survive in
the dynamics of the system. These phenomena are seen when
the delay time exceeds the period of the open loop neuron,
which has not been considered in [25], and are washed out
again when the synaptic activity time is long.

In a more realistic model for the loops consisting of more
than a single neuron, our results show that when all the
synapses are from a single type, fast or slow but not both,
the behavior of the system would be similar to that of a one
neuron loop as is expected. With dissimilar synapses, e.g.,
when at least one of the synapses is slow, the dependence
of the firing rate on the delay time is similar to that of the
loop with a single neuron having a slow synapse. In a loop
consisting of several firing neurons, the faster wins to control
the behavior of the system. Here the neuron with slow afferent
synapse, would fire faster and would lead the dynamics of the
other neurons in the loop.

With the loops with inhibitory synapses, the results do not
show any strict dependence of the behavior of the system on
the activity time of the synapse, and the feedback loop via
inhibitory synapses always slows down the rate of the firing.
Also the system cannot be entrained by the inhibitory pulses in
the loop, despite the excitatory pulses, which can synchronize
the firing of the neuron.

It is well known that an external periodic force can
entrain the dynamics of the nonlinear oscillators such that the
frequency of the forced oscillator is determined by an integer
(or rational) multiple of the external frequency [42]. In systems

with internal competing time scales, similar phenomena can
occur, known as self-induced resonance, when the two time
scales are of the same order [45]. Here we reported similar
phenomena in which the external periodic force is replaced by
the circulating excitation through feedback loop. Considering
firing rate and external current as the output and input,
respectively, in the characteristic diagram of the system, which
shows the input-output relation, such a resonance appears as
the plateaus in multiples of the inverse of the delay time.
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APPENDIX: PHASE RESET CURVES

For a periodically spiking neuron with period T , we define
a uniformly increasing phase φ as

φ = 2π

T
(t − ti), (A1)

where ti is the time of the last spike [29]. Imposing a pulse of
duration 1 ms in different phases on the limit cycle after the
ith spike, the timing of the next spike ti+1 is recorded and the
phase reset � is defined as [18]

� = 1 − ti+1 − ti

T
. (A2)

In Fig. 10, phase reset curves for the three models described
in Sec. II are shown.
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