
École doctorale IAEM Lorraine

Modélisation mathématique et
simulation numérique de populations
neuronales thalamo-corticales dans le

contexte de l’anesthésie générale
Analytical and numerical studies of thalamo-cortical neural population

models during general anesthesia

THÈSE
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COLLET Pierre, Professeur à l’Université de Strasbourg.
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Abstract

Although general anesthesia is an indispensable tool in today’s medical surgery, its precise
underlying mechanisms are still unknown. During the propofol-induced sedation, the anesthetic
actions on the microscopic single neuron scale lead to specific changes in macroscopic-scale ob-
servables such as electroencephalogram (EEG) signals. For low concentration of propofol these
characteristic changes comprised increased activity in the δ− (0.5-4 Hz) and α− (8-13 Hz) fre-
quency bands over the frontal head region, but increased δ− and decreased α−power activity
over the occipital region. In this thesis, we employ thalamo-cortical neural population models,
and based on the experimental data, the propofol effects on the synaptic and extra-synaptic
GABAergic receptors located in the cortex and thalamus are modelized to understand the mech-
anisms underlying the observed certain changes in EEG-spectral power. It is shown that the
models reproduce well the characteristic spectral features observed experimentally. A key find-
ing of this work is that the origin of δ−rhythm is fundamentally different from the α−rhythm.
Our results indicate that dependent on the mean potential values of the system resting states,
an increase or decrease in the thalamo-cortical gain functions results in an increase or decrease
in the α−power, respectively. In contrast, the evolution of the δ−power is rather independent
of the system resting states; the enhancement of spectral power in the δ−band results from the
increased synaptic or extra-synaptic GABAergic inhibition for both increasing and decreasing
nonlinear gain functions. Furthermore, we aim to identify the parameters of a thalamo-cortical
model by fitting the model power spectrum to the EEG recordings. To this end, we address
the task of parameter estimation in the models that are described by a set of stochastic ordi-
nary or delay differential equations. Two case studies dealing with noisy pseudo-experimental
data are first carried out to compare the performance of different optimization methods. The
results of this elaboration show that the method used in this study is able to accurately estimate
the independent model parameters while it allows us to avoid the computational costs of the
numerical integration. Taken together, the findings of this thesis provide new insights into the
the mechanisms responsible for the specific changes in EEG patterns that are observed during
propofol-induced sedation.

Keywords: general anesthesia, thalamo-cortical neural population models, propofol, EEG-
spectral power, optimization algorithms.
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Résumé

Bien que l’anesthésie générale est un outil indispensable dans la chirurgie médicale d’aujourd’hui,
ses mécanismes sous-jacents précis sont encore inconnus. Au cours de la sédaction induite par
le propofol les actions anesthésiques à l’échelle microscopique du neurone isolé conduisent à
des changements spécifiques à l’échelle macroscopique qui sont observables comme les signaux
électroencép-halogrammes (EEG). Pour une concentration faible en propofol, ces changements
caractéristiques comprennent une augmentation de l’activité dans les bandes de fréquence δ (0.5-4
Hz) et α (8-13 Hz) dans la région frontal, une l’activité augmentée de δ et une l’activité diminuée
de α dans la région occipital. Dans cette thèse, nous utilisons des modèles de populations neu-
ronales thalamo-corticales basés sur des données expérimentales. Les effets de propofol sur les
synapses et sur les récepteurs extra-synaptiques GABAergiques situés dans le cortex et le thala-
mus sont modélisés afin de comprendre les mécanismes sous-jacents aux changements observés
dans certains puissance de l’EEG-spectrale. Il est démontré que les modèles reproduisent bien les
spectrales caractéristiques observées expérimentalement. Une des conclusions principales de ce
travail est que l’origine des δ−rythmes est fondamentalement différente de celle des α−rythmes.
Nos résultats indiquent qu’en fonction des valeurs moyennes des potentiels de l’état du système
au repos, une augmentation ou une diminution des fonctions de gain thalamo-corticale résulte re-
spectivement en une augmentation ou une diminution de α−puissance. En revanche, l’évolution
de la δ−puissance est plutôt indépendant de l’état du système au repos; la amélioration de
la puissance spectrale de δ−bande résulte de l’inhibition GABAergique synaptique ou extra-
synaptique pour les fonctions de gain non linéaire à la fois croissante et décroissante. De plus,
nous cherchons à identifier les paramètres d’un modèle de thalamo-corticale en ajustant le spectre
de puissance de modèle pour les enregistrements EEG. Pour ce faire, nous considérons la tâche
de l’estimation des paramètres dans les modèles qui sont décrits par un ensemble d’équations
différentielles ordinaires ou bien stochastiques avec retard. Deux études de cas portant sur des
données pseudo-expérimentale bruyants sont d’abord effectuées pour comparer les performances
des différentes méthodes d’optimisation. Les résultats de cette élaboration montrent que la
méthode utilisée dans cette étude est capable d’estimer avec précision les paramètres indépen-
dants du modèle et cela nous permet d’éviter les coûts de calcul des intégrations numériques.
En considérant l’ensemble, les conclusions de cette thèse apportent de nouveaux éclairages sur
les mécanismes responsables des changements spécifiques qui sont observées pendant la sédation
propofol-induite dans les modèles de EEG.

Mots-clés: L’anesthésie générale, modèles de populations neuronales thalamo-corticales, propo-
fol, spectre de puissance de I’EEG, algorithmes d’optimisation.
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4.1 Physiological and electroencephalographic data observed in a single subject while
increasing the propofol concentration. (A) Blood plasma concentration of propofol
with respect to administration time. Since average clinical propofol concentrations
in sedation are around or smaller than 1µg/ml [321], the subject my leave the
clinical sedation phase at about t = 5min. (B) Mean spectral power in the δ−
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General Introduction

General anesthesia is a reversible drug-induced medical procedure, which aims to achieve
amnesia (lack of memory), sedation (reduced arousability), unconsciousness (lack of awareness
also called hypnosis), and immobility (lack of movement) in patients. Muscle relaxation and
analgesia (lack of pain) are sometimes included in definitions of the anesthetized state. The
word “Anesthesia” comes from Greek word anesthesia meaning “lack of sensation”; “an”- means
“without”, and “aisthesis” means “feeling”. General anesthesia is an indispensable tool in today’s
medical surgery. For instance, it has been reported that in the United States more than 21
million patients [1] and in North America around 40 million patients [2] each year receive general
anesthesia for surgery . However, despite the widespread use of general anesthesia in today’s
medical practice, its precise underlying mechanism is still unknown.

General anesthetics include a large number of drugs, which without them, the modern clin-
ical surgery would not have been possible. Joseph Priestley discovered nitrous oxide, also known
as laughing gas, in 1772. Some years later, Humphry Davy started experimenting with nitrous
oxide [3]. In 1844, dentist Horace Wells first used nitrous oxide as an anesthetic during tooth
surgery treatment of a patient. However, the anesthetic was incomplete and his attempt was un-
successful. After Horace Wells unsuccessfully promoted nitrous oxide as an anesthetic, William
Morton concentrated on the possibility of ether [3]. In 1842, physician Crawford Williamson
Long was the first to use ether as a general anesthetic during a surgery to remove a tumor.
His experiments, however, was unrecorded, and on 16 October 1846, the first successful public
demonstration of ether anesthesia was performed by William Thomas Green Morton at theatre
of the Massachusetts General Hospital [3]. Whereas, neither ether nor chloroform is used in
today’s surgery, nitrous oxide is one of the most widely used anesthetics in dentistry and emer-
gency centers. Since then, many anesthetic drugs such as barbiturates, thiopental, etomidate,
halothane, isoflurane, sevoflurane, ketamine, and propofol were introduced as anesthetic drugs
[3]. Propofol, an emulsion formulation of 2,6-di-isopropylphenol, is a short-acting, intravenously
administered hypnotic agent, which is popular among patients because of its relatively fast onset
and offset, and anti-emetic effects [4]. The present work is primary focussed on the mechanism
actions of this agent, since it is widely used in clinical medicine and theoretical studies, and its
molecular effects is relatively well-understood.

During most of the 20th century, anesthetics were widely thought to work by dissolving in
the cell membrane and the lipid cell membrane of neurons are the action target of anesthetic
agents [5, 6]. In other words, anesthetic agents act through a common and nonspecific mecha-
nism. However, in recent years, significant progress has been made toward our understanding
of how anesthetic agents act on the single neurons (microscopic scale) [7, 8, 9]. An enormous
body of evidence indicates that anesthetics directly bind to specific proteins, known as recep-
tors, and there is not a single mechanism of action for all anesthetic agents [10, 11, 12]. Among
different candidates, the ligand-gated ion channels are the most likely molecular targets for the
anesthetics [10, 13]. Now, there is a general agreement that GABA receptors as the major
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inhibitory neurotransmitter in the CNS play a central part in the actions of anesthetic drugs
[2, 14]. It is widely accepted that GABA subtype A, or GABAA receptor is a primary target
for anesthetics [15, 16]. Anesthetics prolong the duration of chloride channel opening at the
GABAA receptors and thereby the function of this target is enhanced by the anesthetics action
[10]. Due to the molecular effects of anesthetics, during transition to anesthesia, specific changes
in brain imaging data such as EEG patterns can be observed experimentally [17]. For clinically
relevant concentration of propofol these characteristic changes comprised increased activity in
the delta (0.5-4 Hz) and alpha (8-13 Hz) frequency bands over the frontal head region, but
increased delta and decreased alpha activity over the occipital region [18, 19]. An important
question raised here is how the anesthetic actions on the microscopic single neuron scale could
lead to changes in EEG and behavior that can be observed at macroscopic scales. It is one major
aim of this thesis to address this important question by establishing a link between the two scales.

Today general anesthesia works well in most cases, however, it is certainly not without risk.
Approximately, one out of 13,000 patients die from anesthesia-related incidents, and about one or
two patient in every 1,000 cases may gain awareness while receiving general anesthesia. Broadly
speaking, the procedure of anesthesia is mainly based on the experience of the anesthesiologists
and it depends strongly on the general health of the patients. In other word, it is performed
according to the clinical responses of individual patients. During the operation, anesthesiolo-
gists monitor the physiological systems as well as the electrical brain activities of the patient to
adapt the anesthetic concentration constantly to control the depth of anesthesia. Clinical and
physiological signs such as blood pressure, heart rate or involuntary movements can be affected
by the administration of other drugs and thus can be difficult to interpret in practice. In con-
trast, recording the anesthetic effects in the EEG signals provides more reliable assessment of
a patient’s level of consciousness during the administration of anesthetic agents. Consequently,
several EEG-based monitoring parameters have been widely used for estimating the anesthetic
depth. According to EEG information, indicators such as BIS index, spectral edge frequency
(SEF50 or SEF95) and median frequency have been designed to quantitatively determine the
depth of anesthesia. However, estimating the depth of anesthesia is still a challenging area
in anesthesia research. A thorough understanding of the mechanisms underlying anesthesia is
crucial to improve the monitoring methods. Mathematical modeling of electrical brain ac-
tivities offer a promising avenue for exploring the validity of hypotheses about the mechanisms
of anesthesia, and in general, the mechanisms underlying the brain activities during different
functional states.

The modeling of brain activities can be performed in different scales from single neurons to
neural populations. To reveal the molecular actions of anesthetics at microscopic level, we can
rely on the models that describe the dynamics of the single neurons. However, simulation of the
activity of even a small brain region by the detailed biophysical modeling of synapses and spiking
neurons is very computationally expensive. For instance, a realistic neuronal network such as
a cortical column has a huge number of neurons (on the order of 104-108 neurons), while each
neuron can be synaptically connected with 104-105 others [20]. In addition, the physiological
topology of real neuronal networks is rather unknown. Relating the behavioral phenomena that
are observed at the macroscopic scales to the individual elements of such large ensembles is
also extremely challenging. In contrast, most of the coarse-scale observables such as EEG data
reflect the overall activity of a large population of neurons [21, 22]. This aspect allows us to
successfully simulate the empirical EEG signals by mean-field approximation [23, 24, 25]. The
details of individual neurons such as action potentials and the dynamic of ion channels do not
explicitly appear in mean field models, but are considered indirectly in the description. The
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general aim of mean field models is to describe average properties of population of neurons in
small spatial patches and short time windows, through a set of differential equations or integral-
differential equations [26, 27]. This approach typically considers ensembles of excitatory and
inhibitory neurons, which incorporates the connection elements between neurons as excitatory
and inhibitory synapses [23, 28]. A factor common to all versions of mean field models is that
the mean membrane potentials and mean firing rates of neurons are related to each other by a
sigmoidal function.

In recent decades, mean field models have been extensively employed to reproduce the EEG
signals [29, 30, 31, 24]. The simulation results of such coarse-grained models display remarkably
close agreement with the empirical observations [32, 33]. This description has proven successful
in reproducing key features of electrical brain waves observed in humans during different brain
functional states such as sleep states [29, 34], and anesthesia condition [35, 36, 37]. It is im-
portant to note that the mean field models consider neural populations on a mesoscopic spatial
level (hundreds of micrometers). Such a mesoscopic model allows us to bridge the various spatial
scales in the brain, from the microscopic scale of single neurons to the macroscopic scale i.e.,
the level of EEG/MEG recordings [20, 25]. Today, there exists a reasonable understanding on
the molecular mechanisms of anesthetic actions [10]. However, how the microscopic effects at
receptor sites can be related to the specific changes in macroscopic observables such as EEG data
is poorly understood. The present work employs mean field models to provide a link between
the effects of anesthetics on single neurons and their impact on the global activity of the neural
populations as recorded by neuroimaging techniques.

In the last decades many works have been focussed onto the study of molecular effects of
anesthetic agents [10, 9]. The study of neural population models under the effect of anesthetics
has been triggered by the work of Steyn-Ross et al. (1999), who proposed a model for a cortical
macro column which received external stochastic stimuli from subcortical areas [38, 39, 40]. Since
then, many mathematical models at population level and single neuron level have been proposed
to understand the mechanisms underlying general anesthesia [24, 41, 28, 35]. Most of previous
theoretical studies focussed on the dynamic of cortical neurons [24, 41, 28]. However, several
lines of evidence indicate that the thalamus and the thalamo-cortical circuits are important tar-
get sites for the general anesthetics [9, 42, 43]. While the cortex is known as the source of the
brain’s spontaneous electrical activity, the thalamus acts as both the gate for sensory input
to the cortex and the site for feedback from cortical cells [44, 45]. It has been demonstrated
that the thalamus is central to the processing and transmission of nearly all sensory informa-
tion that ultimately reaches the cortex. Furthermore, there is accumulating evidence showing
that the thalamo-cortical circuits crucially involve in the formation of sleep, normal physio-
logic activities, consciousness processing and anesthetic-induced unconsciousness [10, 44, 45, 46].
According to these findings, we use a model consisting of cortex and thalamus to reach more
precise elucidation of physiological mechanisms. The present work considers a mean-field model
of thalamo-cortical system to understand the mechanisms responsible for the specific changes in
EEG patterns that are observed during propofol sedation. It includes excitatory and inhibitory
cortical populations which are synaptically connected to thalamic reticular and relay neuron
populations by delayed thalamo-cortical axonal fibres. The model takes into account anesthetic
action at inhibitory GABAergic synaptic and extra-synaptic receptors located in cortical and
thalamic neural populations.

Although it is known that the cortex, the thalamus, and the thalamo-cortical feedback loops
contribute to the EEG oscillations [35], the precise role of each structure to the dynamics of
EEG is unknown. By manipulation of system topology, we can obtain deeper insights into the
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mechanisms responsible for generation of EEG rhythms. In particular, we focus on delta and
alpha frequency ranges, since during altered states of arousal, characteristic changes can be ob-
served in these frequency bands [18, 19]. Moreover, we aim to investigate the role of synaptic and
extra-synaptic inhibition mediated in cortex and thalamus in generating the key EEG signatures
recorded during propofol induced sedation. For instance, we can neglect the propofol effect in
cortical cells and concentrate just on the effect of propofol in thalamic neurons. This simpli-
fication emphasizes the importance of the thalamus and weakens the impact of the cortex for
major neural effects under anesthesia. Since GABAA receptors mediate most of the inhibitory
synaptic transmission (apart from GABAB receptors which are not included into model), we
assume all inhibitory synaptic transmissions are mediated by GABAA receptors. It has been ob-
served experimentally that propofol increases the decay time constant of GABAA synapses, and
hence increases the total charge transfer in these synapses but not that of excitatory synapses
[10, 9]. Interestingly propofol has been shown to have a negligible effect on the amplitude synap-
tic receptors in cortical neurons [47], it markedly increases amplitude, decay time, and charge
transfer of GABAA inhibitory postsynaptic currents evoked in relay neurons in the ventrobasal
complex [48]. We modelize the mentioned propofol effects in a very close agreement with the
empirical observations. Then, we seek to address the important question how these propofol
effects on GABAA receptors lead to the observed specific changes in EEG-power spectrum.
In addition, we aim to investigate how the effect of the anesthetic drug propofol on GABAergic
extra-synaptic receptors can change the neural population activity and the EEG signals.

Mathematical modeling is a key task in studying systems biology. The goal of modeling is
to build mathematical formulations which quantitatively describe the dynamical behavior of the
system under study [49, 50, 51, 52]. To achieve this goal, we first need a successful model for-
mulation which should be able to reproduce the specific features observed in experimental data,
at least qualitatively [53, 54, 55]. This task is referred to as structure identification [56, 57].
The subsequent task is parameter estimation [58, 59]. After the model identification, we need
to determine the unknown model parameters. Since the model output depends on the values of
model’s parameters, reproducing the certain features of the experimental measurements requires
selecting a suitable set of the unknown parameters. Although some of the model parameters
may be measured directly in experiments, the majority of parameters has to be estimated from
experimental measurements. Therefore, parameter estimation i.e. identification of the the un-
known model parameters from experimental observations is one of the major steps in developing
mathematical models. Nevertheless, finding a set of model parameters which accurately fits the
recorded data is an extremely difficult task, especially for the nonlinear dynamic models with
many parameters and constraints [54, 60].

In the recent years, considerable attention has been paid to the optimization algorithms.
Consequently, several optimization algorithms have been proposed and successfully applied in
various scientific fields. One of the successful approaches for estimating model parameters is
using optimization techniques. In this approach, the parameter inference problem is converted
into a functional optimization problem, i.e., minimizing a fitness function which is defined by the
discrepancy between the simulated data and the measured data [61, 62, 54]. In fact the dynamic
of majority of biological systems are described by differential equations rather than explicit al-
gebraic functions [63]. Moreover, biological systems are often subject to external noise from
signal stimuli and environmental perturbations. Thereby, we focus on the parameter estimation
of systems whose dynamics are governed by stochastic ordinary or delay differential equations.
At the final elaboration of this thesis, we aim to address the task of parameter estimation in
models that are described by a set of stochastic (ODEs or DDEs) from measured data. In
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this study three case studies are investigated by employing different optimization algorithms
including gradient descent local search and stochastic global search methods. The performance
of optimization methods is then compared to determine which search algorithm is more suitable
for each of the considered parameter estimation problem. To evaluate the performance of these
algorithms two case studies dealing with a set of pseudo-experimental data referred to as in silico
parameter estimation problem are investigated: a stochastic damped harmonic oscillator, and
a stochastic linear delay differential equation, which pose an unimodal and a multimodal opti-
mization problem, respectively. In the third case study, a thalamo-cortical model is fitted to the
power spectra of EEG recordings (an in vivo parameter estimation problem). Since the power
spectrum analysis is valid only if the resting state of the system is stable, we seek the conditions
which guarantee the system stability. The derived inequality conditions reduce the parameter
searching space and thereby greatly facilitate the nonlinear estimation task. We show that the
proposed model fits very well to the EEG power spectra, particularly to the power spectral peaks
observed in delta and alpha frequency ranges.
Another challenge in parameter estimation problems is the identifiability of the estimates, i.e.,
whether the model parameters can be uniquely determined by the given experimental data
[59, 64]. This task referred to as practical identifiability [55]. We employ different methods
to address this issue. The confidence regions of the estimates are plotted and the correlation
and sensitivity matrices are analyzed to examine the reliability of the estimates in each case study.

Summarizing, in this thesis we aim to touch on an important question: What is the mecha-
nism underlying propofol sedation? To answer this question using modeling approach, based on
the issues mentioned above we have to address these questions: how we can link the anesthetic
actions on the molecular targets to their impact on the macroscopic observables such as EEG
signals? What is the role of cortex, thalamus and thalamo-cortical circuits in generating the
EEG rhythms in delta and alpha frequency ranges? Given a set of coupled differential equations
and a set of experimental data, how we can identify the unknown model parameters? These
questions raise a general question: What are challenging in the modeling approach to reveal the
mechanisms underlying the system under study.

This thesis comprises of five chapters. Chapters 1 and 2 present the fundamental physiolog-
ical and mathematical elements that we need to carry out the analytical and numerical studies.
Subsequently, the results of the work are given in chapters 3-5. These latter sections are orga-
nized into two major parts. The first part is devoted to the mathematical and computational
modeling of the problem, which are presented in chapters 3 and 4. In the second part, shown
in chapter 5, we utilize a data-driven approach to gain new insights into the mechanisms of the
system under study. In following we outline each chapter in more details.

Chapter 1 summarizes current knowledge of the neural mechanisms by which anesthetics
induce general anesthesia, from single neuron level to macroscopic observations. The chapter
begins with the clinical definition and the components of general anesthesia. We then briefly
introduce the anesthetic agents that are most commonly used in today’s medical practice and the
ongoing clinical studies. Subsequently, the available information on the mechanisms of action of
anesthetics at single neuron level and their molecular targets is reviewed. It is very important
to study the molecular action of anesthetics since it allows us to identify which structures of the
brain are essential targets for anesthetics and in turn play a major role in the induction of altered
states of arousal. Following this part, we summarize the propofol effects on the EEG signals,
which can be monitored experimentally to track the brain states under anesthesia. Major part
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of the work in this elaboration aims to link the anesthetic action at single neuron level to their
effects on the macroscopic observables such as EEG data. Finally, in the last section we outline
briefly the current hypotheses on the mechanisms underlying the observed changes associated
with induction and maintenance of anesthesia.

Chapter 2 is devoted to the essential mathematical tools, which are basis for the research
presented in the subsequent chapters. In this chapter we first describe the DDEs, and we con-
centrate on their stability analysis in numerical and analytical frameworks. The study of DDEs
is important since the dynamics of many physical and biological systems are characterized by
DDEs. In particular, we are interested in DDEs since the mean field models used in this work
are governed by a set of coupled DDEs. The latter section focuses on the neural population
models. We briefly describe the neural field models, which enable us to successfully simulate the
electrical brain waves in a physiologically accurate approach. Finally, two well-tried neural field
models in reproducing the key EEG features during different brain activities are presented: a
mean field model developed by Peter Robinson and colleagues (referred to as Robinson model)
and an extended neural field model based on the works of Axel Hutt (referred to as Hutt model),
which will be employed in chapters 3 and 4, respectively.

Chapter 3 focuses on the role of extra-synaptic receptors in the context of anesthesia. In
this chapter, we first review briefly the literature on extra-synaptic receptors and their affinity
to anesthetic drugs. Then the effects of anesthetic propofol on synaptic and extra-synaptic
receptors located in cortical and thalamic neural populations are modelized. Subsequently, we
show how the specific features observed in frontal EEG power spectrum during propofol sedation
can be reproduced by incorporating a neural population model with the anesthetic effects on
GABAergic extra-synaptic receptors. Finally, the origin of spectral power peaks in delta and
alpha frequency bands is discussed briefly. In the following chapter, the origin of observed delta
and alpha activities in EEG spectral power is investigated in more details.

In Chapter 4, we aim to understand the mechanisms underlying the observed specific changes
in frontal and occipital EEG rhythms during the propofol induced sedation. The neural popula-
tion model employed in this chapter is analyzed in details to reveal the origin of spectral power
peaks in delta and alpha frequency ranges. In this chapter we propose a reduced thalamo-cortical
model, which is still adequate to reproduce the observed changes in EEG rhythms. In addition,
the low dimensionality of this model allows us to investigate the role of system resting states,
model sub-circuits and the neural populations in an analytic scheme. In final chapter, the pro-
posed model is fitted to the EEG power spectra to quantify how close its predictions are to the
experimental observations.

Chapter 5 is devoted to parameter estimation (inverse problem) i.e., the inference of model
parameter values from experimental observations. In this chapter we solve the considered in-
verse problems by minimizing the discrepancy between the simulated output and the measured
data. To this end, we apply different optimization algorithms namely Levenberg-Marquardt
(LM), Particle Swarm Optimization (PSO), Differential Evolution (DE), Monte Carlo Markov
Chain (MCMC) and Simulated Annealing (SA). The performance of these search algorithms is
compared in the case of unimodal and multimodal optimization problems. In addition, in each
of the considered case study, the precision of estimates is evaluated by plotting the confidence
regions and by analyzing the sensitivity and correlation matrices.

The results obtained in this thesis are based on the experimental data that was made available
by Prof. Jamie Sleigh (University of Auckland, New Zealand).
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L’anesthésie générale est un acte médical médicamenteux réversible dont l’objectif principal
est de réaliser l’amnésie (manque de mémoire), la sédation (arousability réduit), l’inconscience
(manque de conscience également appelé l’état d’hypnose), et l’immobilité (manque de mouve-
ment) aux patients. La relaxation musculaire et l’analgésie (manque de douleur) sont parfois
incluses dans les définitions de l’état anesthésié. Le mot “anesthésie” provient du mot grec
“anaisthesia” signifie la manque de sensation ou bien l’insensibilité aux douleurs. En fait, le mot
“an” veut dire “la manque” et le mot “aisthesia” signifie “la sensation”. L’anesthésie générale
est un outil indispensable dans la chirurgie médicale d’aujourd’hui. Par exemple, on a signalé
qu’aux Etats-Unis plus de 21 millions de patients et en Amérique du Nord autour de 40 millions
de patients reçoivent chaque année l’anesthésie générale pour la chirurgie. Cependant, malgré
la l’utilisation répandue de l’anesthésie générale dans la médicale pratique d’aujourd’hui, son
mécanisme sous-jacente précise est encore inconnu.

Les anesthésiques généraux incluent un grand nombre de médicaments, qui, sans eux, la
clinique de chirurgie moderne n’auraient pas été possibles. En 1772, Joseph Priestley a découvert
le protoxyde d’azote, également connu sous le nom de gaz hilarant. Quelques années plus tard,
Humphry Davy a commencé à expérimenter avec du protoxyde d’azote. En 1844, le dentiste
Horace Wells pour la première fois a utilisé le protoxyde d’azote comme anesthésique pendant
un traitement chirurgical dentaire d’un patient. Cependant, l’anesthésique était inachevé et sa
tentative était infructueuse. Après que Horace Wells ait sans succés utilisé le protoxyde d’azote
comme anesthésique, WilliamMorton s’est concentré sur la possibilitéé d’utiliser l’éther. En 1842,
le médecin Crawford Williamson Long était le premier à utiliser l’éther comme une anesthésie
générale au cours d’une intervention chirurgicale pour enlever une tumeur. Ses expériences,
cependant, n’étaient pas enregistrées et le 16 Octobre 1846, la première démonstration publique
et réussie de anesthésie par l’éther a été réalisée par William Thomas Green Morton au théâtre
de l’Hôpital Général du Massachusetts. Bien que, ni l’éther ni le chloroforme est utilisé dans
la chirurgie d’aujourd’hui, le protoxyde d’azote est l’un des anesthésiques les plus utilisés dans
les centres dentaires et d’urgence. Depuis, beaucoup de médicaments anesthésiques comme les
barbiturates, de thiopental, l’etomidate, le halothane, l’isoflurane, le sevoflurane, le ketamine,
et le propofol ont été introduits en tant que médicaments anesthésiques. Le Propofol, une
émulsion représenté par la formule 2,6-di-isopropylphénol est un agent hypnotique de courte
durée d’action (en intraveineuse administré). Il est populaire parmi des patients en raison de son
début et sa fin d’action sont relativement rapids, et aussi pour des effets antiémétiques. Ce travail
est focalisé premierement sur les actions du mécanisme de cet agent, car il est largement utilisé
dans les cliniques médicales et les études théoriques, et ses effets moléculaires est relativement
bien compris.

Pendant la majeure partie du 20ème siècle, des anesthésiques ont été largement considerés
pour fonctionner par la dissolution dans la membrane plasmique et la membrane plasmique
lipide des neurones sont la cible d’action des agents anesthésiques. Autrement dit, les agents
anesthésiques agissent par un mécanisme commun et non spécifique. Cependant , au cours des
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dernières années , des progrés significatifs ont été accomplis vers la compréhension de la façon dont
les agents anesthésiques agir sur les neurones individuels (échelle microscopique). Un ensemble
de preuves indique que les anesthésiques se lient directement aux protéines spécifiques, connus
par récepteurs, et il n’y a pas un mécanisme d’action unique pour tous les agents anesthésiques.
Parmi différents candidats, les canaux ligand-à déchenchements périodiques d’ion sont les cibles
moléculaires le plus susceptibles pour les anesthésiques. Maintenant, il y a un accord général que
les récepteurs de GABA comme neurotransmetteur inhibitrice principale dans le CNS jouent
un rôle central dans les actions des médicaments anesthésiques. Il est largement admis que le
GABAA, ou Récepteur GABAA est une cible primaire pour anesthésiques. Les anesthésiques
prolongent la durée ouverture du canal de chlorure aux récepteurs GABAA et donc la fonction
de cet objectif est améliorée par l’action d’anesthésiques. En raison des effets moléculaires des
anesthésiques, pendant la transition à l’anesthésie, les changements spécifiques dans les données
de l’imagerie du cerveau comme les modèles EEG peuvent être observées expérimentalement.
Pour la concentration clinical de propofol ces changements caractéristiques compris ont augmenté
l’activité dans les bandes de fréquence delta (0.5-4 Hz) et alpha (8-13 Hz) sur la région frontal,
mais ils ont augmenté l’activité du delta et ils ont diminué l’activité de l’alpha sur la région
occipital . Une question importante qui se pose est de savoir comment les actions anesthésiques
sur le échelle microscopique d’un seul neurone pourrait entraîner des changements dans l’EEG
et le comportement qui peut être observé à l’échelle macroscopique. Un des objectifs principaux
de cette thèse est de répondre cette question importante en établissant un lien entre les deux
échelles.

Aujourd’hui, l’anesthésie générale fonctionne bien dans la plupart des cas, mais il est cer-
tainement pas sans risque. Environ une personne sur 13000 patients meurent des accidents liés
à l’anesthésie, et environ un ou deux patients sur 1000 cas peut prendre la conscience même en
recevant une anesthésie générale. D’une manière générale, la procédure de l’anesthésie est princi-
palement basé sur l’expérience des anesthésistes et il dépend fortement de l’etat de santé général
des patients. Autrement dit, ça se fait en fonction des réponses cliniques des patients individuels.
Dans la salle d’opération, les anesthésistes surveillent les réactions physiologiques ainsi que les
activités électriques du cerveau pour adapter la concentration anesthésique constamment pour
contrôler la profondeur de l’anesthésie. Les signes cliniques et physiologiques comme la pres-
sion artérielle, la fréquence cardiaque ou des mouvements involontaires peuvent être affectés par
l’administration d’autres médicaments et peuvent donc être difficiles à interpréter en pratique.
En revanche, l’enregistrement des effets anesthésiques dans les signaux EEG fournit une évalua-
tion plus sûr de l’etat de conscience d’un patient pendant l’administration d’agents anesthśiques.
En conséquence, plusieurs paraméètres de surveillance à la base d’EEG ont été largement utilisés
pour l’estimation de la profondeur de l’anesthésie. Selon les informations d’EEG, les indicateurs
comme l’indice BIS, la fréquence de bord spectrale (SEF50 ou SEF95) et la fréquence médi-
ane ont été dessiné pour déterminer quantitativement la profondeur de l’anesthésie. Pourtant,
le fait d’estimer la profondeur d’anesthésie est toujours un domaine difficile dans la recherche
d’anesthésie. Une compréhension approfondie des mécanismes sous-jacents d’anesthésie est cru-
cial pour améliorer les méthodes de surveillance. Lamodélisation mathématique des activités
électriques du cerveau offrent une direction prometteuse pour explorer la validité des hypothèses
sur les mécanismes de l’anesthésie, et en général, sur les mécanismes sous-jacents des activités
du cerveau pendant différents états fonctionnels.

La modélisation des activités du cerveau peut être effectuée dans les échelles différentes
des neurones isolés aux populations de neurones. Pour révéler les actions moléculaires des
anesthésiques au niveau microscopique, nous pouvons considérer les modèles qui décrivent la
dynamique de la neurones isolés. Par contre, la simulation de l’activité de même une petite
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région du cerveau par la modélisation biophysique détaillée des synapses et des neurones im-
pulsionnels est très coûteux en calcul. Par exemple, un réseau neuronal réaliste comme une
corticale colonne a un grand nombre de neurones (à l’ordre de 104 − 108 neurones) tandis que
chaque neurone peut être connecté synaptiquement avec les autres 104−105. De plus, la topolo-
gie physiologique des réseaux neuronaux réels est plutôt inconnu. Il faut noter que connecter
les phénomènes comportementaux qui sont observés aux échelles macroscopiques aux éléments
individuels de ces grands ensembles est aussi extrêmement difficile. En revanche, la plupart des
coarsescale observables comme les données EEG reflètent l’activité globale d’une grande popula-
tion de neurones. Cet aspect nous permet de simuler avec succès les signaux empiriques d’EEG
par une approximation de champ moyen. Les détails de neurones individuels comme potentiels
d’action et la dynamique des canaux ioniques n’apparaissent pas explicitement dans les mod-
èles de champ moyennes mais ils sont considérés indirectement dans la description. L’objectif
général de modèles de champ moyen est de décrire les propriétés moyennes de population de neu-
rones dans des petites parcelles spatiales et de courtes fenêtres du temps, grâce à un ensemble
d’équations différentielles ou d’équations d’intégrale-différentielles. Cette approche typiquement
considère l’ensemble d’excitateur et inhibiteur des neurones, qui incorpore les éléments de rela-
tion entre les neurones excitateurs et les synapses inhibitrices. Un facteur commun à toutes les
versions de modèles de champ moyen est que la moyenne potentiel électrochimique de membrane
et les taux de la moyenne cadence de tir sont liés les uns aux autres par une fonction sigmoïde.

Au cours des dernières décennies, les modèles de champ moyen ont été largement utilisé pour
reproduire les signaux EEG. Les résultats de la simulation de ces modéles grossiers montrent
une correspondance remarquable avec les observations empiriques. Cette description a reussit
dans la reproduction des principales caractéristiques des ondes electric du cerveau observés chez
les humains lors de différents états fonctionnels du cerveau tels que les états de sommeil, et
l’état de l’anesthésie. Il est important de noter que les modéles de champ moyen considèrent
populations de neurones sur un niveau spatiale mésoscopique (des centaines de micrométres). Un
tel modéle mésoscopique nous permet de combler les différentes échelles spatiales dans le cerveau,
de l’échelle microscopique des neurones individuels à l’échelle macroscopique, à-dire le niveau
des enregistrements EEG / MEG. Aujourd’hui, il existe une compréhension raisonnable sur les
mécanismes moléculaires d’actions anesthésiques. Cependant, comment les effets microscopiques
sur les sites de récepteurs peuvent être liés à des changements spècifiques dans observables
macroscopiques tels que les données EEG est mal compris. Le présent travail utilise des modéles
de champ moyen de fournir un lien entre les effets des anesthésiques sur les neurones simples et
leur impact sur l’activité globale des populations de neurones enregistrés par les techniques de
neuroimagerie.

Dans les dernìres décennies, de nombreux travaux ont été focalisée sur l’étude des effets
moléculaires des agents anesthésiques. L’étude des modèles de population de neurones sous
l’effet des anesthésiques a été déclenché par le travail de Steyn-Ross et al. (1999), qui a pro-
posé un modéle de macrocolonne corticale qui a reçu stimuli stochastiques externes de régions
sous-corticales. Depuis lors, de nombreux modèles mathématiques au niveau de la population
et le niveau de neurone unique ont été proposées pour comprendre les mécanismes anesthésie
générale sous-jacente. La plupart des études théoriques précédents ont porté sur la dynamique
de neurones corticaux. Cependant, plusieurs éléments de preuve indiquent que le thalamus et les
circuits thalamo-cortical sont des sites cibles pour les important anesthésiques généraux. Bien
que le cortex est connu comme étant la source de l’activité électrique spontanée du cerveau,
le thalamus agit à la fois pour la porte d’entrée sensorielle dans le cortex et le site de réaction
à partir de cellules corticales. Il a été démontré que le thalamus est au centre de traitement
et de transmission de la quasi-totalité de l’information sensorielle qui atteint finalement le cor-
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tex. En outre, il existe des preuves montrant que l’accumulation des circuits thalamo-corticale
impliquent cruciale dans la formation de sommeil, les activités physiologiques normales, le traite-
ment de conscience et inconscience induite anesthésique. Selon ces résultats, nous utilisons un
modéle constitué de cortex et le thalamus pour faire emerger plus précise des mécanismes physi-
ologiques. Le présent travail considè re un modè le de champ moyen du systè me thalamo-cortical
pour comprendre les mécanismes responsables pour les changements spécifiques qui sont observés
au cours de la sédation avec l’anesthesique propofol dans les schèmas EEG. Le modèle comprend
populations corticales excitateurs et inhibiteurs qui sont reliés par des synapses aux populations
réticulaire et les neurones relais thalamiques par fibres axonales retardées. Le modè le prend en
compte l’effet anesthésique au recepteurs inhibitrice GABAergique synaptique et les récepteurs
extra-synaptiques situés dans populations de neurones thalamiques et corticales.

Bien qu’il soit connu que le cortex, le thalamus, et les boucle thalamo-corticales de rétroaction
contribuent aux oscillations EEG, le rôle précis de chaque structure à la dynamique de l’EEG
est inconnue. Par la manipulation de la topologie du système, nous pouvons obtenir une com-
préhension plus profonde sur les mécanismes responsables de la génération des rythmes EEG.
En particulier, nous nous concentrons sur les bandes de fréquence de delta et alpha, puisque les
etats au cours modifiés de l’excitation, des changements caractéristiques peuvent être observées
dans ces bandes de fréquences. En outre, nous nous efforçons d’étudier le rôle de l’inhibition
synaptique et extra-synaptic dans le cortex et le thalamus dans la génération des caractéris-
tiques de l’EEG enregistrées pendant sédation par propofol. Par exemple, nous pouvons négliger
l’effet de propofol dans les cellules corticales et de se concentrer seulement sur l’effet de propofol
dans les neurones thalamiques. Cette simplification souligne l’importance du thalamus et affaib-
lit l’impact du cortex des effets neuronaux principaux sous anesthésie. Comme les récepteurs
GABAA créent plus de la transmission synaptique inhibitrice (en dehors de récepteurs GABAB
qui ne sont pas inclus dans le modèle), nous supposons que toutes les transmissions synaptiques
inhibitrices sont amenés par des récepteurs GABA. Il a été observé expérimentalement que le
propofol augmente la constante de temps de décroissance des synapses GABA, et donc augmente
le transfert de charge totale dans ces synapses, mais pas celle de synapses excitateurs. Il est in-
téressant de propofol qu’il a été montré avoir un effet négligeable sur les récepteurs synaptiques
d’amplitude dans les neurones corticaux, mais il augmente nettement l’amplitude, le temps de
décroissance, et le transfert de charge des recepteurs GABAA postsynaptiques inhibitrice évoqués
dans les neurones de relais dans le complexe ventrobasal. Nous modèlisons les effets de propofol
mentionnés dans un accord très étroit avec les observations empiriques. Ensuite, nous cher-
chons à répondre à la question importante la façon dont ces effets de propofol sur les récepteurs
GABA conduisent à des changements spécifiques observées dans la puissance spectrique.
En outre, nous nous efforçons d’étudier comment l’effet du propofol anesthésique sur récepteurs
GABAergiques extra-synaptiques peut modifier l’activité de la population de neurones et les
signaux EEG.

La modélisation mathématique est une tâche essentielle dans l’étude de la biologie des
systm̀es. L’objectif de la modélisation est de construire des formulations mathématiques qui
décrivent quantitativement le comportement dynamique du systè me à l’étude. Pour attein-
dre cet objectif, nous devons d’abord une formulation de modéle de réussite qui devrait être
en mesure de reproduire les fonctions spécifiques observées dans les données expérimentales, au
moins qualitativement. Cette tâche est appelée identification de structure. La tâche suivante
est l’estimation des paramètres. Après l’identification du modèle, nous devons déterminer
les paramètres inconnus du modèle. Comme la dynamique du modèle dépend des valeurs des
paramètres du modèle, reproduisant certaines caractéristiques des mesures expérimentales néces-
site la sélection d’un appropriée set des paramètres inconnus. Bien que certains des paramètres
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de modèle peut être mesurée directement dans les expériences, la majorité des paramètres doit
être estimée à partir de mesures expérimentales. Par conséquent, l’estimation des paramètres
dire identification des paramètres inconnus du modèle èq partir d’observations expérimentales est
l’une des principales étapes de l’élaboration de modèles mathématiques. Néanmoins, trouver un
ensemble de paramètres du modèle qui correspond précisément aux données enregistrées est une
tâche extrêmement difficile, surtout pour les mod̀les dynamiques non linéaires avec de nombreux
paramt̀res et de contraintes.

Dans les derniéres années, une attention considérable a été accordée aux algorithmes d’ op-
timisation. Par conséquent, plusieurs algorithmes d’optimisation ont été proposées et appliquées
avec succés dans divers domaines scientifiques. Une des approches réussies pour les paramètres du
modèle d’estimation est en utilisant des techniques d’optimisation. Dans cette approche, le prob-
lème paramètre de l’inférence est transformé à un problème fonctionnel d’optimisation, à savoir,
en minimisant une fonction de remise en forme qui est définie par la discordance entre les données
simulées et les données mesurées. En fait, la dynamique de la majorité des systèmes biologiques
sont décrits par des équations différentielles plutôt que des fonctions algébriques explicites. En
outre, les systémes biologiques sont souvent soumis à des stimuli externes bruites et les per-
turbations environnementales. Ainsi, nous nous concentrons sur l’estimation des paramètres de
systèmes dont la dynamique sont régies par des équations différentielles ordinaires ou stochas-
tiques retard. À l’élaboration finale de cette thèse, nous nous efforçons de répondre à la tâche de
l’estimation des paramètres des modèles qui sont décrit par un ensemble de (EDO ou DDE) de
données stochastiques mesurées. Dans cette étude, trois études sont étudiés en utilisant différents
algorithmes d’optimisation, y compris la descente de gradient recherche locale et des méthodes de
recherche globale stochastiques. La performance des méthodes d’optimisation est ensuite com-
parée à déterminer quel algorithme de recherche est plus approprié pour chacun des estimations
des paramètres considérés du problème. Pour évaluer la performance de ces algorithmes deux
études portant sur un ensemble de données pseudo-expérimentales appelées in silico problème
d’estimation de paramètres sont etudiés: un oscillateur stochastique harmonique amortie, et
une équation stochastique linéaire retardé différentiel, ce qui pose un problème d’optimisation
unimodale et multimodal. Dans la troisième étude, un modèle thalamo-corticale est adapté au
spectre de puissance des enregistrements EEG (une optimization de paramètre in vivo). Comme
l’analyse du spectre de puissance est valable seulement si l’état de repos du système est sta-
ble, nous cherchons les conditions qui garantissent la stabilité du système. Les conditions
d’inégalité dérivés réduisent l’espace paramètre de recherche et ainsi facilitent énormement la
tâche d’estimation non linéaire. Nous montrons que le modèle proposé convient très bien à la
puissance des spectres EEG, en particulier pour les pics spectraux de puissance observée en
bandes de fréquence delta et alpha.

Un autre défi pour les problèmes d’estimation des paramètres est la possibilité d’identifier
des estimations, à savoir, si les paramètres du modèle peuvent être déterminés uniquement par
les données expérimentales fournies. Cette mission est appelée identifiabilité pratique. Nous
employons différentes méthodes pour résoudre ce problème. Les régions de confiance des estima-
tions sont tracées et la corrélation et les matrices de la sensibilité sont analysées pour examiner
la fiabilité des estimations dans chaque étude.

En résumé, dans cette thèse, nous nous efforçons de toucher à une question importante:
quel est le mécanisme sous-jacent du sédation par propofol? Pour répondre à cette question
en utilisant une approche de modélisation, basée sur les questions mentionnées ci-dessus, nous
devons adresser ces questions: comment nous pouvons lier les actions anesthésiques sur les cibles
moléculaires de leur impact sur les observables macroscopiques tels que les signaux EEG? Quel
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Introduction générale

est le rôle du cortex, le thalamus et circuits thalamo-corticale dans la génération des rythmes
de l’EEG en bande de fréquence delta et alpha ? Étant donné un ensemble d’équations dif-
férentielles couplées et un ensemble de données expérimentales, comment nous pouvons identifier
les paramètres modèle inconnu ? Ces questions soulèvent une question générale: Qu’est-ce que
contestent l’approche modeling de révèler les mécanismes sous-jacents du système à l’étude.

Cette thése se compose de cinq chapitres. Les chapitres 1 et 2 présentent les éléments physi-
ologiques et mathématiques fondamentales que nous devons effectuer pour les études analytiques
et numériques. Par la suite, les résultats des travaux sont donnés dans les chapitres 3-5. Ces
derniéres sections sont organisées en deux grandes parties. La premiére partie est consacrée à la
modélisation mathématique et informatique du problème, qui est présentés dans les chapitres 3
et 4. Dans la deuxième partie, décrit dans le chapitre 5, nous utilisons une approche axée sur les
données à acquèrir de nouvelles connaissances sur les mécanismes de la système à l’étude. Dans
la suite, nous présentons chaque chapitre dans plus de détails.

Le chapitre 1 résume les connaissances actuelles sur les mécanismes neuronaux que les
anesthésiques induisent pendant une anesthésie générale, du niveau de neurone unique aux ob-
servations macroscopiques. Le chapitre commence par la définition clinique et les composants
de l’anesthésie générale. Nous introduisons ensuite brièvement les agents anesthésiques les plus
couramment utilisés dans la pratique médicale d’aujourd’hui et les études cliniques en cours. Par
la suite, les informations disponibles sur les mécanismes d’action des anesthésiques au niveau du
neurone unique et leurs cibles moléculaires est examiné. Il est trè s important d’étudier l’action
moléculaire des anesthésiques car il nous permet à identifier quelles structures du cerveau sont
des cibles essentielles pour anesthésiques et à son tour jouent un rôle majeur dans l’induction
des états altérés de l’excitation. Aprés cette partie, nous résumons les effets de propofol sur les
signaux EEG, qui peuvent être surveillés experimentalement pour suivre les états du cerveau sous
anesthésie. La majeure partie du travail dans cet élaboration vise à relier l’action anesthésique
au niveau du neurone unique à leurs effets sur les observables macroscopiques tels que les don-
nées EEG. Enfin, dans la dernière section, nous présentons brièvement les hypothéses actuelles
sur les mécanismes sous-jacents les changements observés associés à l’induction et l’entretien de
l’anesthésie.

Le chapitre 2 est consacré aux outils mathématiques essentiels, qui sont la base pour la
recherche présenté dans les chapitres suivants. Dans ce chapitre, nous décrivons d’abord les
DDE, et nous nous concentrons sur leur analyse de la stabilité dans les cadres numériques et
analytique. L’étude des DDEs est important car la dynamique de nombreux systèmes physiques
et biologiques sont caractérisés par des DDEs. En particulier, nous sommes intéressés aux DDEs
comme les modèles de champ moyen utilisées dans ce travail sont régies par un ensemble de
DDEs couplés. La derniére section se concentre sur les modèles de population de neurones.
Nous décrivons brièvement les modèles de champs de neurones, qui nous permettent de simuler
avec succès les ondes cérébrales électriques dans une approche physiologique précise. Enfin, deux
modèles de champs de neurones bien établies en reproduisant les caractéristiques EEG pertinents
au cours des différentes activités cérébrales sont présentés: un mod‘ele moyen développé par Peter
Robinson et ses coll‘egues (appelée modèle Robinson) et un modèle de champ neuronal étendue
basée sur les travaux de Axel Hutt (appelé mod‘ele Hutt), qui sera utilisé dans les chapitres 3 et
4, respectivement.

Chapitre 3 met l’accent sur le rôle des récepteurs extra-synaptiques dans le cadre de l’anesthésie.
Dans ce chapitre, nous examinons d’abord brièvement la littérature sur les récepteurs extra-
synaptiques et de leur affinité pour les médicaments anesthésiques. Ensuite, les effets anesthésique
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de propofol sur les récepteurs synaptiques et récepteurs extra-synaptiques localisé dans les pop-
ulations de neurones corticales et thalamique sont modélisés. Par la suite, nous montrons com-
ment les caractèristiques spécifiques observées dans le spectre de puissance EEG frontale au
cours de sédation par propofol peuvent être reproduits en incorporant un modèle de population
de neurones avec les effets anesthésiques sur récepteurs GABAergiques extra-synaptiques. Enfin,
l’origine des pics de puissance en bande de fréquence delta et en bande de fréquence alpha est
discuté brièvement. Dans le chapitre suivante, l’origine des activités delta et alpha observées en
EEG spectrale de puissance est étudiée plus en détail.

Dans le chapitre 4, nous nous efforçons de comprendre les mécanismes qui sous-tendent les
changements spécifiques observèes dans les rythmes de l’EEG frontaux et occipitaux pendant
la sedation par propofol. Le modèle de la population de neurones utilisé dans ce chapitre est
analysé en détails pour révèler l’origine des pics de puissance spectrales en bande delta et alpha.
Dans ce chapitre, nous proposons un modèle thalamo-cortical réduit, qui est encore suffisant
pour reproduire les changements observés dans les rythmes EEG. En outre, la faible dimension
de ce modèle nous permet d’étudier le rôle des états du système de repos, le modèle sous-circuits
et les populations de neurones dans un schéma analytique. Dans le dernier chapitre, le modèle
proposé est adapté sur le spectre de puissance de l’EEG à quantifier à quel point ses prédictions
sont aux observations expérimentales.

Le chapitre 5 est consacré à l’estimation des paramètres (problème inverse), à savoir, l’inférence
de types valeurs de paramètres à partir d’observations expérimentales. Dans ce chapitre, nous
résolvons les problèmes inverses considérés en minimisant l’écart entre la sortie simulée et les
données mesurées. Finalement, nous appliquons des algorithmes d’optimisation de différents,
comme Levenberg-Marquardt (LM), Particle Swarm Optimization (PSO), Differential Evolution
(DE), Monte-Carlo Markov Chain (MCMC) et Simulated Annealing (SA). La performance de ces
algorithmes est comparée dans le cas des problèmes d’optimisation unimodales et multimodales.
En outre, dans chacun de l’étude considéré, la précision des estimations est évaluée en traçant
les régions de confiance et par l’analyse de la sensibilité et de matrices de corrélation.

Les résultats obtenus dans cette thseè sont basés sur les données expérimentales qui ont été
mis à disposition par Prof. Jamie Sleigh (Université d’Auckland, Nouvelle-Zélande).
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Abstract

Although general anesthesia is commonly used in medical care for patients undergoing surgery, its
precise underlying mechanisms remain to be elucidated. There are, however, several hypotheses
that have been advanced to explain how general anesthesia occurs. A wide variety of drugs
are used in modern anesthetic practice and for various hypnotic agents, during the transition
from awake to anesthesia condition, specific changes in brain imaging data such as EEG can be
observed experimentally. However, the mechanisms responsible for these characteristic changes
are still unknown. This chapter begins with a clinical definition for general anesthesia. Then, the
experimental findings that reveal the molecular mechanisms of anesthetic actions are summarized.
Subsequently, we present the action of anesthetics on macroscopic brain observables such as
EEG signals. Finally, a brief summary of the current hypotheses on the mechanisms by which
anesthetics cause general anesthesia is provided.

1.1 General anesthesia

General anesthesia is a reversible medical procedure that is commonly induced by the adminis-
tration of a combination of anesthetic agents to induce amnesia (partial or total loss of memory),
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Chapter 1. Neuroscience of general anesthesia

sedation (reduction in the level of arousal and motor activity), hypnosis (loss of consciousness)
and immobility (loss of motor reflexes) in patients. There are differing definitions of general
anesthesia, but phenomena such as analgesia (loose of response to pain), muscle relaxation and
anxiolysis should be included, in addition to the most obvious effect of loss of consciousness
[10]. The reversibility along with the stability of physiological systems including the autonomic,
cardiovascular, respiratory, and thermo-regulatory systems are the most important aspect of gen-
eral anesthesia which distinguish this drug-controlled condition from persistent vegetative state,
brain death or other type of irreversible unresponsiveness [17, 65]. It is important to point out
that sometimes sedation is used as a synonym for hypnosis (LOC) or it refers to as incomplete
hypnosis. However, there are recent evidences showing that sedative and hypnotic states are
produced by distinct mechanisms [10]. Sedation is accompanied by slurred speech and decrease
in anxiety, stress, irritability, and excitement, whereas LOC is defined as loss of the ability for
patient to respond to verbal commands or mild shaking [10]. Typically, sedation occurs before
LOC which appears at higher anesthetic concentrations. General anesthesia is widely used in
today’s medical surgery. For instance, it has been estimated that in the United States, around
100,000 patients per day receive general anesthesia for surgical procedures [1]. In the last decades,
general anesthesia has attracted theoretical researchers and there have been a large number of
efforts to reveal how the anesthetics create and sustain the state of general anesthesia. However,
the precise mechanisms underlying the induction of, depth of, or recovery from anesthesia are
not yet fully understood. In the following section, we briefly introduce the anesthetic agents that
are most commonly used in surgical procedures and clinical studies. Subsequently, a brief review
of the current knowledge on the mechanisms of action of general anesthetics and the relevant
molecular targets is provided.

1.2 General anesthetics

General anesthetics include a large number of drugs which without them, modern medicine,
especially surgery, would not have been possible. Nitrous oxide (N2O), also known as laughing
gas, was discovered in 1772 but its anesthetic properties was discovered in 1844 [3]. At about
the same time (1840s), ether and chloroform were used as an effective surgical anesthetic [3]. In
1846, the first successful public demonstration of anesthesia was performed by ether at theatre of
the Massachusetts General Hospital [3]. Whereas, neither ether nor chloroform is used in today’s
surgery, nitrous oxide is one of the most widely used anesthetics in dentistry and emergency
centers. However, since 1980s, the use of nitrous oxide has been declined. Later, barbiturates
was synthesized in 1864 and used as general anesthetic in 1903. Thiopental was introduced
around 1935. Etomidate and halothane were found to have anesthetic properties in the 1950s
and 1960s, respectively. Enflurane and isoflurane have been used since 1970s. Propofol was
introduced in the mid- 1980s, and Sevoflurane and Desflurane was first used in 1990s [3].

General anesthetics can be divided into two categories: inhalation (volatile) and intravenous
anesthetics [10]. The inhalation anesthetics such as Halothane, Enflurane, Isoflurane, Nitrous
oxide, Sevoflurane, Desflurane enter the body through the lungs. The inhalation anesthetics are
used usually together with intravenous agents since they are low-potency compounds [10]. Intra-
venous anesthetics which are more potent than inhalation agents include Ketamine, Thiopental
(a Barbiturate), Methohexital, Etomidate, and Propofol. For more detailed discussion about
different anesthetic agents see Refs. [66, 3, 67], and the references therein.

Propofol, an emulsion formulation of 2,6-di-isopropylphenol, is a short-acting, intravenously
administered hypnotic agent; and is in widespread use for sedation and general anesthesia because
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1.3. Anesthetics effects on single neurons (microscopic level)

of its relatively fast onset and offset, and anti-emetic effects [4]. Due to the widespread use
of propofol in clinical medicine and theoretical studies, beside its relatively well-understood
molecular effects, the present work is primarily focussed on the action mechanism of this agent.

1.3 Anesthetics effects on single neurons (microscopic level)

1.3.1 Molecular targets of general anesthetics

Identifying the target sites of anesthetic agents is crucial to understand the precise mechanisms
of general anesthesia. Understanding the neuronal mechanisms of general anesthesia provide
us with the neurobiological basis to elucidate the mechanisms of consciousness, which is one
of the greatest unanswered questions in neuroscience. In recent years, significant progress has
been made in the understanding of how general anesthetics act at the molecular level. Although
the exact mechanisms governing anesthesia are still unclear, it is thought to be induced by
enhancement of inhibitory neurotransmission or inhibition of excitatory neurotransmission. Here,
some aspects of current knowledge on the molecular level effects of general anesthetics are briefly
reviewed.

Over 100 years ago, the first theory of anesthesia was suggested by Meyer and Overton [5, 6].
They found a positive correlation between lipid solubility and anesthetic potency. The Meyer-
Overton correlation led to the lipid hypothesis of general anesthesia, which states that the lipid
cell membrane of neurons are the action target of anesthetic agents and they act by dissolving in
the cell membrane [5, 6]. In other words, anesthetic agents act through a common and nonspecific
mechanism [7, 10]. However, several lines of evidence indicate that general anesthetics interact
directly with specific target sites instead of a nonspecific interactions with the lipid cell membrane
[8, 11, 12]. It is now generally accepted that anesthetics directly bind to specific targets and there
is not a single mechanism of action for all anesthetic agents [9]. Until now, many molecular targets
and neuronal transmission pathways have been identified to contribute to general anesthesia. Ac-
cording to experimental findings, the most likely molecular targets are ligand-gated ion channels
including GABAA receptors, Glycine receptors, nicotinic and muscarinic Ach receptors, 5-HT3
(5-hydroxytryptamine, type 3) receptors, AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole pro-
pionic acid), NMDA (N-methyl-Daspartate) and kainate receptors [10, 9]. Moreover, some other
ion channels such as potassium and sodium channels, and hyperpolarization activated cyclic
nucleotide (HCN) channels are also involved in general anesthesia [13]. As it is shown in Fig.
1.1, these targets are differentially sensitive to various anesthetics. The most known anesthetic
target is the GABAA receptors [2]. Although anesthetics bind to a wide variety of receptors,
there is accumulating evidence showing that GABAA receptor is the major molecular target for
the action of many anesthetic drugs in the brain [15, 16]. Propofol, our anesthetic of interest,
binds to both GABAA and glutamergic receptors, however, it has much larger effect on GABAA

receptors as compared to its effect on AMPA and NMDA receptors.
The GABA system induces inhibition in the CNS by generating inhibitory postsynaptic

currents (IPSCs) [66]. GABA receptors are known as the major inhibitory neurotransmitter
receptors in the mammalian brain, where one-third of all synapses are GABAergic [68, 14].
Activation of GABA receptors results in hyperpolarization of the cell membrane and suppression
of the excitability of the neurons. GABA receptors belong to the family of ligand-gated ion
channels which are found at both synaptic and extra-synaptic sites [69, 70, 71]. There are two
classes of GABA receptors: GABAA and GABAB [72]. Whereas GABAA receptors generate fast
and transient postsynaptic currents by Cl− influx, GABAB receptors produce slower and more
complex responses, which involve G proteins and second messengers [73].
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Fig. 1.1. Ligand-gated ion channels as the most probable target sites for the action of current
clinical anesthetics. In the figure, a large red or blue spot indicates significant potentiation or
inhibition, respectively; a small light red or blue spot indicates little potentiation or inhibition,
respectively. The data is taken from Refs. [10, 13].

As mentioned above, there is a general agreement that GABAA receptors are important
target sites in mediating the inhibition during administration of many general anesthetics [16].
In particular, propofol produces the state of unconsciousness by acting on the GABAA recep-
tors. The experimental observations indicate that propofol increases the decay time constant of
GABAA synapses, and hence increases the total charge transfer in these synapses [9], as shown
schematically in Fig. 1.2. It is important to point out that GABAA receptors are also found
outside the synapse, and the tonic inhibitory currents generated by the extra-synaptic GABAA

receptors are also potentiated by general anesthetics [74, 75]. See chapter 3 for more details on
anesthetics effects on extra-synaptic receptors.

1.3.2 Neuroanatomical targets of general anesthetics

It is important to note that general anesthetics act on certain brain areas since anesthetic agents
selectively interact with molecular targets and the target sites are specifically distributed among
different brain regions. The experimental observations demonstrate that the cortex, thalamus,
hypothalamus, reticular activating system (RAS), brainstem and spinal cord are the most critical
targets for anesthetic action. There is strong evidence indicating that immobility is primarily pro-
duced by depressing spinal neurons whereas sedation, amnesia and unconsciousness are related
to anesthetic actions on neurons in the brain [10]. Due to the functions of aforementioned brain
areas, they play a significant role in drug induced general anesthesia; cortex as the most modern
part of the brain responsible for high-level cognitive functions; thalamus, which contributes to
arousal regulation, as a relay station that gates sensory inputs to the cortex; hypothalamus as a

4



1.3. Anesthetics effects on single neurons (microscopic level)

GABA

+Anesthetic

ControlTime

Inhibitory postsynaptic current

C
u
rr

e
n
t

Fig. 1.2. Synaptic and extra-synaptic activation of GABAA receptors. GABAA receptors are
activated by the release of GABA into the synaptic cleft due to arriving of action potentials.
Synaptic receptors which are sensitive to GABA at mmol concentration produce fast inhibitory
postsynaptic currents (IPSCs), whereas extra-synaptic receptors can be activated by low concen-
trations of GABA (at µmol order) and generate slower tonic inhibitory currents [16]. Propofol
increases the decay time constant of the inhibitory GABAA responses by prolonging the duration
of channel opening. This leads to an increase in the total charge transfer in these synapses. The
figure is taken from Ref. [10].
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wake-sleep regulatory system; reticular activating system (RAS), which connects the brainstem
to the cortex, as the ascending and descending neuronal pathways responsible for regulating
arousal and sleep-wake transitions; brainstem, which forms the connection between the brain
and the spinal cord, as a pivotal site for maintaining consciousness and regulating the sleep cycle
[46]. However, it is not precisely clear which brain regions play a major role in the induction of
different stages of anesthesia. For instance, Rudolph & Antkowiak have reported that at sedative
concentrations, propofol affect cortical neurons whereas the subcortical areas are influenced by
higher concentrations [10]. Accordingly, they have proposed a linear correlation between propo-
fol plasma concentration and anesthetic depth, however, recent studies have shown that even
at sedative concentrations, propofol significantly decreases the excitability of spinal neurons. In
other study, it has been demonstrated that propofol effects are initiated via subcortical mecha-
nisms, rather than in the neocortex [76]. Furthermore, whether the hypnosis is induced by drug
effects on the cerebral cortex, thalamus, or subthalamic areas is still under debate [45, 77, 78].
Despite such debates over the exact role of brain regions at different anesthesia levels, an enor-
mous body of evidence indicates that two main brain structures affected by anesthetic agents are
the cortex and the thalamus (see Ref. [12] and the references therein). In particular, these brain
regions have been identified to be the predominant candidates for general anesthetic to produce
sedation and hypnosis, since at clinically relevant concentrations, they are strongly suppressed
by various anesthetic agents [9, 10]. Taken together, appealing understanding has been obtained
from functional neuroimaging and electrophysiological techniques, but due to the complexity of
arousal system and the structural diversity of anesthetic agents, the precise role of each brain
structure in induction of altered states of arousal is unknown.

Although anesthetics may act on several brain regions, the cortex and the thalamus (thalamo-
cortical and cortico-thalamic loops) are highly sensitive targets for propofol [79, 48]. Most of the
previous theoretical studies on anesthetic effects have considered a purely cortical model or they
have explained the observed features during anesthesia by a cortico-thalamic model consider both
thalamic and cortical anesthetic actions [24, 39, 23, 28, 35]. There is ample evidence showing
that anesthetics potentiate functions of cortical inhibitory neurons [80, 47]. Importantly, the
scalp EEG represents the neural activity of thousands or millions of spatially oriented pyramidal
neurons of the cortex [22]. Moreover, a large body of evidence supports the importance of
thalamus in the generation of specific oscillations observed experimentally during anesthesia
state [81, 9]. The thalamus receives many inputs from and projects onto the cortex. According
to these findings, we have focussed on the anesthetic effects on cortex and thalamus. The model
used in the present work includes cortex and thalamus to reach more precise elucidation of
physiological mechanisms. The details of the model is presented in the subsequent chapter.
The propofol actions on GABAregic receptors within cortex and thalamus are modelized at the
beginning of chapter 3. In the section that follows, the anesthetic effects on the brain imaging
data such as EEG signal are summarized.

1.4 Anesthetics effects on EEG signals (macroscopic level)

Functional neuroimaging techniques such as positron emission tomography (PET), functional
magnetic resonance imaging (fMRI), along with electroencephalography (EEG) have proven to
be powerful tools in unraveling the neural mechanisms that underlie the human brain dynamics.
Since metabolic activities in the brain are reflected in the patterns recorded by neuroimaging
methods, these techniques can be employed to monitor different alterations in functional state of
the brain such as transition to general anesthesia and altered states of arousal [18, 19]. Especially
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EEG, which provides direct measurement of cognitive processing that take place in cortical brain
area shed some more light on the mechanisms underlying the changes associated with induction
and maintenance of anesthesia [82, 83].

Anesthetic studies using functional brain imaging provide evidence that different anesthetic
agents cause distinct patterns in EEG oscillations. However, general anesthesia induced by var-
ious anesthetics is accompanied by some common features in EEG rhythms. The low amplitude
α−oscillations in the EEG rhythms predominate during wakefulness, whereas high amplitude
δ−waves are the hallmark of anesthesia onset. Most anesthetics (except Ketamine) decrease
the frequency and increase the amplitude of EEG rhythms in a dose-dependent manner. This
includes volatile agents, propofol, barbiturates, benzodiazepines and narcotics. As the dose of
anesthetics is slowly increased, high-amplitude, low-frequency oscillations appear in EEG pat-
terns. At or beyond the point at which consciousness is lost, the slow EEG rhythms are more
increased, and an increase in EEG spectral power within β−frequency band is observed, that
is sometimes called beta buzz. Further increasing the dose of anesthetics causes the so called
burst suppression, which is characteristic of deep anesthesia. As the state of general anesthesia
deepens, the time duration between suppression periods lengthens gradually until at the level
of deep coma, the bursts are disappeared and EEG displays a continuous flat (isoelectric) line
[17]. According to these findings, the EEG signatures related to increasing concentrations of
anesthetics can be used to assess the depth of anesthesia.

Here we only summarize the propofol effects on EEG signals. The effects of other anesthetics
on brain imaging data are described in [17, 12]. It has been reported that clinically relevant
concentrations of propofol cause specific changes in electroencephalogram (EEG) rhythms of
healthy adult humans. Up to sedative concentrations, these observations include an increase in
power in the α− and δ− frequency bands over the frontal head region, accompanied by decreased
α−activity, and an increase in δ−activity over the occipital sites [81, 84, 85, 86]. The frontal
enhancement and occipital attenuation of α−activity is commonly termed anteriorization. It has
been shown that in deeper sedation, propofol attenuates posterior α− power and increases frontal
β and total power [18, 87], and is associated with a frontal increase in α−, δ−, and θ−power.
With the loss of consciousness frontal power further increases across all frequency bands [87].
The frequency bands are defined in the intervals (0-4Hz) for delta, (4-8Hz) for theta, (8-13Hz)
for alpha and (13-30Hz) for beta power.

Moreover, it has been observed that for many anesthetic agents such as thiopental, propofol,
sevoflurane, etomidate, except for midazolam, during the transition from consciousness to un-
consciousness, the EEG shows biphasic effects in amplitude: an initial increase of the spectral
power followed by a decrease at higher concentrations [88, 89].

According to the aforementioned findings, substantial insights have been achieved into the
molecular and cellular mechanisms of action of most anesthetic agents [90, 13]. However, how
the anesthetic actions at single neuron level (microscopic scale) could lead to specific changes
in EEG and behavior that can be observed at macroscopic scales, is an important question in
medicine and neuroscience. To address this question, it is necessary to establish a bridge between
the two scales. A well-tried method to link these two levels of brain dynamics is using the mean-
field approach to characterize the activity of large populations of neurons at an intermediate
mesoscopic scale [20, 91, 27]. The EEG represents the neural activity of thousands or millions
of spatially oriented pyramidal neurons of the cortex [22]. By virtue of this large number of
neurons, it is reasonable physiologically to model EEG by considering spatiotemporal neural
activity of populations using a mean-field approximation [21, 92, 93, 29, 30, 23, 94, 95]. A large
number of previous theoretical studies on anesthetic effects apply a mean-field model to explain
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Chapter 1. Neuroscience of general anesthesia

various features in EEG data recorded during general anesthesia [31, 24, 38, 39, 40, 41, 25,
35, 28]. These theoretical studies are based on various extensions of the model of Liley et al.
[96, 97], Wilson & Cowan [98], and Amari [99], including excitatory and inhibitory neurons and
synapses. The following chapter concentrates on the neural population models and the mean
field approximation.

1.5 Current theories of general anesthesia

A unifying theory that explains a common mechanism that underlies the anesthetic-induced
unconsciousness for different hypnotic agent is still lacking. However, in recent decades, several
theories have been advanced to understand the neural mechanisms by which general anesthetics
cause unconsciousness when a patient receives high dose of anesthetics. In the following, current
hypotheses on the neural mechanisms underlying anesthetic-induced unconsciousness are briefly
reviewed.

An initial hypothesis to explain how general anesthetics produce unconsciousness was a global
depression in the brain activities. The positron emission tomograohy (PET) data has shown that
the administration of anesthetic propofol causes a global reduction in cerebral blood flow when
LOC occurs [100, 101, 102]. This theory was reinforced by other observations demonstrating that
brain metabolism and EEG activity are reduced by many different anesthetic drugs. However,
several brain imaging studies have shown that certain regions are more deactivated than others
and all anesthetics do not suppress global cerebral metabolism [9, 45]. For instance, propofol
and volatile anesthetics preferentially reduce the regional brain activity in the thalamus, the
precuneus and the posterior cingulate cortex, the cuneus and the frontoparietal cortex, whereas
ketamin increases the activity in the thalamus, anterior cingulate cortex and the frontal cortex [9,
12]. The varying degrees of deactivation during LOC indicate a regional differences in anesthetic
actions rather than a global brain suppression [100]. Therefore, the simple global depression
theory during LOC can not explain the full characterization of effects of anesthetic agents.
Taken together, the global brain activity is not necessarily a reliable predictor for assessing the
level of consciousness [103, 104].

Another hypothesis for the mechanisms of drug-induced LOC is that anesthetics activate a
thalamo-cortical switch during transition into unconsciousness. The theory of thalamic switch of
consciousness is based on a series of convergent evidences showing that suppression of regional
thalamic and midbrain reticular formation activity is a common feature in both inhaled and in-
travenous anesthesia. According to this theory, hyperpolarizing of thalamo-cortical cells increases
the inhibition on excitatory thalamic neurons which in turn reduces the thalamo-cortical output
to the cortex [44]. Thus, a thalamic block of somatosensory information results in the cortex be-
ing functionally disconnected from receiving sensory information [105, 106]. The theory suggests
that LOC induced by different anesthetic agents is associated with a switch in thalamo-cortical
cell from tonic-firing to burst-firing pattern [44, 107]. The shift in thalamo-cortical cell firing
pattern is concomitant with the transition in the EEG pattern from low voltage, fast activity
to high voltage, slow activity [44]. However, this Off-switch model has been challenged by the
evidences showing that thalamus is activated by ketamin and all the anesthetic agents do not
have a same activation/deactivation pattern [12]. In addition, the role of thalamus in induction
of unconsciousness is still under debate. In several studies using brain imaging techniques, the
deactivation of the thalamus has been identified during anesthetic induced unconsciousness [9].
However, there is strong evidence that indicates a more complex role for the thalamus beyond a
basic reduction in signaling during LOC [108]. Many studies have also implicated an important
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1.5. Current theories of general anesthesia

role for the thalamus in producing EEG signatures associated with the altered states of arousal
[81]. Currently it is unknown that the thalamus is inactivated directly or indirectly due to the
cortical suppression. Therefore, it remains to be elucidated whether the thalamus switch can
control consciousness, or the reduced thalamic activity is a secondary effect due to a decrease in
excitatory feedback from the cortex [13].

Another hypothesis assumes that consciousness depends on integration of information within
the thalamo-cortical system. The Information Integration Theory of Consciousness (IITC) sug-
gests that anesthetics induce unconsciousness by preventing the brain to integrate the information
[13, 109]. In this theory, information is defined as a large repertoire of the brain states whereas
their availability to the system describe the integration. Thus, reducing of repertoire of brain
states (decreasing the information) or interrupting of communication between brain states (de-
creasing the integration) results in a reduced level of consciousness [13, 110]. Taken together,
according to IITC, the transition into unconsciousness is associated with a significant reduction
in the capacity of the brain to integrate information. However, the exact mechanism of these
effects is yet unclear.

As mentioned in the previous section, during altered states of arousal, specific changes in EEG
patterns can be observed experimentally. Although it is not precisely clear yet how these certain
changes in EEG rhythms occur, there have been many efforts to understand the underlying
mechanisms leading to such EEG-level phenomena. For instance, a large number of studies have
used mean field models to reveal how the EEG signatures during general anesthesia are related
to anesthetic binding at specific receptor sites. Most of these theoretical studies have pointed
out the importance of anesthetic-induced cortical inhibition considering [35], or neglecting [24,
39, 40, 41, 28] the feedback loop to the thalamus.

The first continuum model for the response of the cerebral cortex to a general anesthetic agent
was proposed by Steyn-Ross and colleagues [38, 39, 40]. They have posited that loss and return
of consciousness is related to a first-order phase transition in brain dynamics with a hysteresis
separation between jump points. In their model, at a critical anesthetic dose correspond to the
point of LOC an abrupt transition occurs from an activated high-firing state to a quiescent low-
activity state, whereas ROC is described by a transition from down to the up state at a lower drug
concentration than LOC. Although their studies have not produced the resting-state α−band
oscillations, they reproduced successfully the biphasic behavior in the EEG power spectrum, as
it is observed for many anesthetic drugs during both induction and recovery from anesthesia
[89, 88]. In contrast, the model of Liley et al. [31, 24] showed that the biphasic effect can be gen-
erated without requiring a phase transition between distinct neural states. Their model predict
a continuous transition of electrical fluctuations in the cortex, implying that the loss and the
return of consciousness occur at the same level of anesthetic concentration. Molaee-Ardekani et
al. [41] advanced the models of Steyn-Ross et al. and Bojak & Liley by adding slow voltage de-
pendent mechanisms on excitatory firing rate dynamics. In their mean field model, the firing rate
of excitatory population was redefined to be also a function of the slow ionic mechanism. This
modification results in an alternation in neural activities between two levels of activity referred
to as up and down states, which reflects the high amplitude, low frequency delta activity in EEG
signals observed during anesthesia. Their results show a good qualitative agreement with EEG
signals recorded from children undergoing anesthesia with the agent desflurane. Hutt & Longtin
[28] have developed a neural field model which is able to distinct response functions at excitatory
and inhibitory synapses in contrast to previous models that have only considered the dynamics
of a single synapse. Moreover, their model incorporates the activity transmission along axonal
trees. They have shown that the biphasic power surges can occur in both case of transition; a
first-order phase transition, or a smoothly continuous transition. Recently, Hutt [111] proposed
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Chapter 1. Neuroscience of general anesthesia

a linear neural population model that explains the anesthetic-induced power increase in neural
activity by an oscillatory instability in the model dynamics. The analytical tractability of the
model allows exploration of conditions under which the power peak shifts to larger frequencies
as observed in experiments.
Taken together, the findings of the mentioned studies emphasize the importance of neural field
theories in elucidating the neurophysiological mechanisms that underlie the observed data during
different behavioral states. In particular, this approach allows us to bridge the scales between
molecular action at neural receptors (microscopic level) and neural population activity (macro-
scopic level).

Other modeling efforts have used conductance based models to explain how the EEG signa-
tures occur in the transition from baseline to anesthetic levels. Ching et al. [81] have developed
a thalamo-cortical model based on single neuron dynamics that suggests the importance of the
thalamus in rhythmic activity in the frontal EEG. They have shown that synchronous frontal
α−activity in the EEG is the result of recruitment of some subset of the thalamic network into the
cortical rhythm. This is in contrast to the theory of thalamic deactivation during general anesthe-
sia. A recent study of Vijayan et al. [112] suggests that reduction in hyperpolarization-activated
current (Ih) silences bursting of a subset of thalamo-cortical cells leading to suppression of occipi-
tal α−activity. Their work indicated that increased GABAergic inhibition onto thalamo-cortical
cells resulted in an α− resonance that is reinforced by reciprocal cortico-thalamic feedback, and
hence leads to the emergence of frontal α−activity. Using a network of single neurons, other
experimental features observed during general anesthesia such as paradoxical excitation [113],
burst suppression [114], or cortical spindles [115] have been also described successfully. Note
that whereas these works focus on the details of biophysical aspects such as action potential and
membrane currents, the mean field approach provides a physiologically more accurate description
of electrocortical activity.

In summary, the theoretical studies point out that mathematical approach can be used to gain
insight into the mechanisms underlying EEG oscillation during different states of arousal. For
review of recent works in modeling anesthesia see Refs. [116, 25, 108]. In the following chapter,
we present neural population models of EEG activity that are able to reproduce the specific
changes in EEG rhythms during general anesthesia in close agreement with the experimental
observations. Furthermore, these models allows us to elucidate how the molecular actions of
anesthetics at the microscopic scale has an impact on macroscopic observables as recorded by
neuroimaging techniques.

1.6 Conclusion

Our current knowledge indicates that anesthetics act by binding to specific target sites. Among
different ligand-gated ion channels as the most likely molecular sites for anesthetic actions, the
GABA receptor is one of the most important anesthetic targets. Moreover, during the altered
states of arousal, specific changes in brain imaging data such as EEG patterns can be observed
experimentally. Numerous studies provide convincing evidence that the potentiation of GABAer-
gic receptors in cortical and thalamic neurons seems to play a crucial role in emerging the EEG
signatures during states of decreased arousal. According to previous theoretical studies, mathe-
matical modelings, in particular mean field models provide deeper insights into mechanisms that
underlie the clinical and neurophysiological features of general anesthesia.
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Abstract

Mathematical modeling plays a central role in understanding the mechanisms underlying a com-
plex system. In the modeling framework, differential equations are well established to describe
the principles that govern the dynamics of the system under study. The present chapter provides
the essential mathematical tools, which are the basis for the future research described in the
following chapters. In particular, we focus on ordinary and delay differential equations since
they are widely used to characterize the dynamics of many physical and biological systems. The
first section of this chapter aims to illustrate the dynamics of a stochastic damped harmonic
oscillator. In the subsequent section, the delay differential equations as well as their stability
analysis are discussed. Furthermore, it is shown how one can compute the power spectrum of a
set of stochastic delay differential equations by the aid of Green’s function method. Finally, in
the last section the neural population models used in this thesis are described. It will be shown
how using neural field models, the macroscopic behavior emerging from the interaction of neural
populations can be described in close agreement with the experimental observations.
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Chapter 2. Studying neural population models of EEG activity

2.1 Damped harmonic oscillator

It is well know that many oscillatory motions in various physical and biological systems can be
described by the classical simple harmonic oscillator (SHO) given by

m
d2x

dt2
= −kx, (2.1)

where k and m denotes the oscillator’s spring constant and mass, respectively [117]. Since the
SHO is neither driven nor damped by any external force, the system oscillates sinusoidally with
a constant amplitude and a frequency of f0 = ω0/2π, where ω0 =

√
k/m is the resonant angular

frequency of the system [117]. However, in many real-world systems, the oscillations are damped
by the resistive or fractional forces. When the damping force depends linearly on the velocity of
the oscillator (Fc = −cdx/dt), the time evolution of the object is given by [118]

d2x

dt2
+ γ

dx

dt
+ ω2

0x = 0, (2.2)

where γ = c/m > 0 is a velocity-dependent constant which determines the strength of damping in
the system [119]. When the damping constant γ is small (γ < 2ω0), the system is under-damped
and oscillates at the shifted resonance frequency ωd =

√
ω2

0 − γ2/4 with an amplitude that decays
exponentially (ωd illustrates the observable frequency of the oscillator). If γ = 0, ωd = ω0, the
system re-casts to the SHO given by Eq. (2.1). When the damping constant γ is large (γ > 2ω0),
the system is over-damped and returns to the steady state without oscillating. For a value of γ
between under- and over-damped characteristic values (γ = 2ω0), the system is critically damped
in which it returns to the steady state as quickly as possible without oscillating [120].

The dynamics of a damped harmonic oscillator driven by a random stochastic force can be
described by the following stochastic differential equation [121]

d2x

dt2
+ γ

dx

dt
+ ω2

0x = ξ(t), (2.3)

where ω0 illustrates the intrinsic (undamped) angular frequency of the oscillator, γ denotes the
damping coefficient, and ξ(t) is Gaussian white noise, i.e., with zero mean and a δ correlation in
time

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2κδ(t− t′), (2.4)

where 〈.〉 denotes the ensemble average and κ is the intensity of the uncorrelated driving noise [122,
123].

Applying the Wiener-Khinchin theorem which states that the power spectral density of a
stationary process is the Fourier transform of its autocorrelation, yields the following formula for
the power spectrum of stochastic damped harmonic oscillator [124, 125]

P (ω) =
2κ√
2π

1

(ω2 − ω2
0)2 + γ2ω2

, (2.5)

where has one maximum at ωmax =
√
ω2

0 − γ2/2.
The effect of damping coefficient on dynamics of damped harmonic oscillator are shown in

Fig. 2.1. In this figure, the power spectra (panel A) and the time-series (panel B) are illustrated
for different values of damping constant. It can be observed that when γ = 0, the system
oscillates with a constant amplitude and shows a sharp spectral peak at the natural frequency
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2.1. Damped harmonic oscillator

of f0 = ω0/2π. For a small value of damping coefficient (e.g., γ = 0.5 Hz) the system oscillates
with an exponentially decreasing amplitude i.e., the oscillator enters in the under-damped regime.
When the damping coefficient is large (e.g., γ = 15 Hz) the system is over-damped and decays
to the steady state without oscillating. In this case, no peak can be seen in the corresponding
power spectrum.
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Figure 2.1. Dynamics of damped harmonic oscillator driven by a random stochastic force. The
panel (A) shows the theoretical and numerical power spectra in blue and red, respectively, for
different values of damping coefficients; γ = 0, 0.5, 2, 15 Hz. The corresponding simulated time
series are presented in panel (B). For smaller values of damping coefficients, the power spectral
peak is sharper whereas for large value of γ, there is no peak in the computed spectrum. The
intrinsic angular frequency of the oscillator is chosen as ω0 = 2π, thus f0 = 1Hz.
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2.2. Linear delay differential equations

2.2 Linear delay differential equations

Delays or lags occur in many physical and biological systems, due to the limited processing speeds
between non-local elements. In neuroscience, the finite propagation speed of action potentials
along axonal branches, or in more general terms, the finite-time interaction between two elements
in a spatially extended system is associated with a time delay. In this context, it is important to
study the dynamics of differential equations with delay because most of the models describing
the activity of a large population of neurons are governed by a set of coupled delay differential
equations. In the current study, the time delays are treated as a constant in the system equations.

The dynamic of systems with time delay can be described by Delay Differential Equations
(DDEs), also known as difference differential equations, which are a special class of differential
equations that the rate of changes in the system depends on its past history. Time-delay systems
and their applications can be found in many different scientific areas such as control theory,
electronic circuits, nonlinear optics and lasers, neuroscience, networks and communication and
so on [126, 127]. It has been extensively recognized that delays play a crucial role in mathematical
modeling of real-world systems and explaining their dynamical properties. For instance, it has
been shown that the delay values can determine the existence, stability and periodicity of the
solutions [128, 129, 130, 131, 132, 133, 134, 135], the bifurcations of equilibria [136, 137, 138, 139],
and the synchronization in such systems [140, 141, 142, 143, 144, 145].

In general, the mathematical formulation of a linear DDE is given by


dY (t)

dt
= AY (t) +BY (t− τ), t ≥ 0,

Y (t) = φ(t), t ∈ [−τ, 0],

(2.6)

where Y is anN×1 activity variable vector,A andB are constant quadratic matrices of orderN ,
τ > 0 denotes the time-delay, and φ(t) is a continuous function that defines the initial condition
[146]. Although a large number of studies have been devoted to obtain the exact stability
conditions for these equations, finding analytical solutions for a wide class of DDEs remains as an
open problem [147, 148, 149, 150, 151]. The DDEs are often solved using numerical methods such
as the Euler or Runge-Kutta method [146, 152], by employing a Lambert function [153, 154], the
discretization of the solution operator as implemented in the software package DDE-BIFTOOL
[155, 156, 157], or by discretizating the infinitesimal generator as implemented in the software
package TRACE-DDE [158, 159].

2.2.1 Stability of delay differential equations

The solution of a DDE is asymptotically stable if and only if all the roots of the characteristic
equation referred to as the characteristic roots have negative real parts. The system is called
unstable if there exists a root with positive real part. For an ordinary differential equation the
characteristic function is a polynomial and the well-known Routh-Hurwitz criterion can be used
to determine the negativity of the real parts of characteristic roots and thus the stability of
the solution [160, 161, 162]. However, the characteristic functions for DDEs are not ordinary
polynomial, instead, they are named as transcendental equation or exponential polynomials or
quasi-polynomials, which the number of their roots can be countably infinite [163].

Assuming a solution of Eq. (2.6) takes the form of Y (t) = Ceλt, where λ ∈ C, yields the
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following characteristic equation

det
(
λI −A−Be−λτ

)
= 0, (2.7)

where I is an N ×N identity matrix. This equation can be written as

P (λ) + e−λτQ(λ) = 0, (2.8)

where and P (λ) and Q(λ) are polynomial in λ. This transcendental equation is known to have
an infinite number of complex roots which, in general, cannot be expressed explicitly in terms
of elementary functions. It is well-known that the system is asymptotically stable if and only
if all the characteristic roots have negative real parts, i.e., Re(λ < 0). Many approaches have
been taken to determine the stability of the transcendental equations, however, in general no
closed-form solution for Eq. (2.8) is available [164]. An analytic approach to obtain the solution
of linear systems of DDEs is based on the concept of the Lambert function. Every functionW (x)
that satisfies W (x)eW (x) = x is called a Lambert function [165]. The lamber function, W (x) has
an infinite number of branches Wk(x), where k ∈ −∞, ...,−1, 0, 1, ...∞. It has been shown that
the solution of Eq. (2.6) in terms of the Lambert function is given by [153, 166]

Y (t) =
k=−∞∑
k=−∞

Cke
( 1
τ
Wk(Bτe−Aτ )+A)τ , (2.9)

where the Ck is an N × 1 coefficient matrix computed from the initial condition. Moreover, the
stability of the system can be determined by using the principal branch of the Lambert function
as

λI =
1

τ
W0(Bτe−Aτ ) +A. (2.10)

It is important to note that this solution is not valid for any kind of DDEs. The solution obtained
by a matrix Lamber function is valid if and only if the matrices A and B are simultaneously
triangularizable (in a particular condition, matrices A andB commute, i.e., AB = BA) [167, 154].
Using this approach, the analytic explicit formula for the scalar problem, i.e., when A = a0,
B = b0 ∈ C is given by λ = 1

τW k(bτe
−aτ ) + a, where k ∈ Z is the branch index. The

characteristic roots for a scalar DDE using Lambert function W(x) can be evaluated in Matlab
with the following commands

lambda = lambertw(k,b*tau*exp(-a*tau))/tau+a,

where tau indicates the time delay.
A robust numerical algorithm to obtain characteristic roots of transcendental equations is

spectral discretization of the infinitesimal generator. In this method, the characteristic roots
can be computed approximately from the eigenvalues of a matrix. It is known that a DDE
can be rewritten as a hyperbolic partial differential equation (PDE) with interrelated boundary
conditions. The operator corresponding to the boundary values is the so-called infinitesimal
generator, and its spectrum is equal with the solutions of the characteristic equation. Thus, the
eigenvalues of a matrix resulting from a sufficiently fine discretization of the PDE will approx-
imate the solutions of the characteristic equation. The approach based on the discretization of
the PDE-representation was used in [168]. Similar ideas proved to be successful in [158, 169], by
applying a spectral discretization scheme based on the Chebyshev nodes as implemented in the
software package TRACE-DDE [159]. The method can be implemented in three lines of code as:
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Nod=100; N=length(A);
D=-cheb(Nod-1)*2/tau;
lambda=eig([kron(D(1:Nod-1,:),eye(N));[B,zeros(N,(Nod-2)*N), A]])

where "Nod" denotes the discretization nodes and "N" is the size of the equation. The code
above uses the function cheb.m, which returns a Chebyshev differentiation matrix. This function
is publicly available in [170].

In the following we employ a robust analytical approach to investigate the stability of DDEs.
This method treats the length of time delay as a bifurcation parameter to seek whether or not
varying the delay length can change the stability characteristics of a steady state. A bifurcation
occurs if by increasing the delay, a steady state becomes unstable i.e., the characteristic roots
λ traverse the imaginary axis. According to this approach, finding a delay value which induces
instability in the system re-casts to the problem of finding real positive roots of a polynomial.
The transcendental equations given by Eq. (2.8) can be rewritten as

N∑
n=0

anλ
n + e−λτ

M∑
n=0

bnλ
n = 0, (2.11)

where N > 0 and M > 0 denotes the degree of polynomials P (λ) and Q(λ), respectively, and
an and bn are constant coefficients. First we investigate the conditions under which the system
is stable in the absence of delay (τ = 0) i.e., when all the roots of the polynomial P (λ) + Q(λ)
have negative real parts. Then we investigate whether a bifurcation can occur as a result of the
introduction of delay, i.e., a root transitions from having negative to having positive real parts.
By inserting a purely imaginary root as iω, where ω ∈ R, into Eq. (2.8) we obtain

P (iω) + e−iωτQ(ω) = 0, (2.12)

and after separating the real and imaginary parts, and writing the exponential in terms of
trigonometric functions we get

ReP(ω) + i ImP(ω) + (ReQ(ω) + i ImQ(ω))(cos(ω)− i sin(ω)) = 0, (2.13)

with

ReP(ω) =

N∑
n=0

(−1)n+1a2nω
2n,

ImP(ω) =

N∑
n=0

(−1)na2n+1ω
2n+1,

ReQ(ω) =

M∑
n=0

(−1)n+1b2nω
2n,

ImQ(ω) =

M∑
n=0

(−1)nb2n+1ω
2n+1,

where ReP and ReQ are even polynomials of ω, while ImP and ImQ are odd polynomials. Since
Eq. (2.13) must hold for both the real and imaginary parts, we obtain

ReP(ω) + ReQ(ω) cos(ωτ) + ImQ(ω) sin(ωτ) = 0,
ImP(ω)− ReQ(ω) sin(ωτ) + ImQ(ω) cos(ωτ) = 0,

(2.14)
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and by squaring each equation and summing the results we get

ReP
2(ω) + ImP

2(ω) = ReQ
2(ω) + ImQ

2(ω), (2.15)

which is a delay-independent polynomial of degree 2N . Since Eq. (2.15) is an even polynomial
equation, it can be written as a N -th degree polynomial in terms of new variable Ω = ω2 ∈ R, as
P(Ω) = 0. If all the real roots of polynomial P(Ω) are negative, i.e., P has not any positive real
root, there is no solution for Eq. (2.14) and therefore increasing τ does not lead to any change in
the stability of the system. Conversely, if P(Ω) has a positive real root, there is a critical value
for delay (τ) that solves Eq. (2.14), and thus can cause a bifurcation.
This result can be summarized in the following theorem:

Theorem 1 (Forde & Nelson [171]) Consider a system of delay differential equation ẏ(t) =
f(y(t), y(t−τ)) with f : Rn×Rn → Rn, and a constant delay τ , where the associated characteristic
equation is given by

N∑
n=0

anλ
n + e−λτ

M∑
n=0

bnλ
n = 0.

If the steady state is stable in the absence of delay i.e., τ = 0, then with increasing delay values,
there exists a critical delay τ∗ > 0 for which the steady state becomes unstable if and only if
P(Ω) given by(∑

n

(−1)na2nΩn

)2

+ Ω

(∑
n

(−1)na2n+1Ωn

)2

=

(∑
n

(−1)nb2nΩn

)2

+ Ω

(∑
n

(−1)nb2n+1Ωn

)2

,

has a positive real root Ω∗ = (ω∗)2.

Thus, when the polynomial P(Ω) has been derived, we must determine whether or not it has
any positive real root. The roots of any second-order polynomial can be expressed explicitly by
well-known quadratic formula. However, the general formula describing the roots of third and
fourth degree polynomials are complicated. Nevertheless, to determine wether a polynomial has
any positive real root or not, it is not necessary to compute the roots explicitly. Instead, it is
sufficient merely to apply simpler approaches such as Routh-Hurwitz condition and Descartes’
Rule of Signs. It is important to point out that Routh-Hurwitz condition is a method to determine
whether or not a polynomial is stable. In other words, it determines if all of the roots of a
polynomial are in the left half of the complex plane (the characteristic roots have negative real
part). Thus, it is not an efficient method to determine whether or not a polynomial has any
positive real roots. It is possible that a second-order polynomial has no positive real solution (it
has a conjugate pair of roots with positive real part and non-zero imaginary part) but fails to
satisfy the Routh-Hurwitz condition. For instance, for the polynomial x2 − 2x+ 25 = 0, whose
roots are 1 ± 2i

√
6, the Routh-Hurwitz conditions are not satisfied, however, the polynomial

has no positive real root. An appropriate approach to identify the possible number of positive
real roots of a polynomial is Descartes’ Rule of Signs. This method determines the maximum
number of positive and negative real roots of a polynomial. More precisely, the rule states that
the number of positive real roots is equal to the number of sign changes in the coefficients, modulo
2. Thus, if the number of sign changes is odd, a positive real root is guaranteed. If, however, the
number of sign changes is even, the rule cannot distinguish between, for example, two roots and
zero roots. In this situation, one must use a more general approach such as the so-called Sturm
sequences. For a detailed discussion see Ref. [171].
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2.2. Linear delay differential equations

Consider a scalar form of the linear DDEs given by Eq. (2.6), with A = a and B = b,
as real numbers. Setting a candidate solution in the form of y(t) = Ceλt yields the following
characteristic equation:

λ− a− be−λτ = 0. (2.16)

In the absence of delay we obtain
λ− a− b = 0,

in which it is stable if and only if a+b < 0. Inserting λ = iω into Eq. (2.16) yields the polynomial
P(Ω) as

Ω + a2 − b2 = 0.

Thus, P(Ω) has not any positive real root if and only if a2 − b2 > 0. Taking these conditions
together, a linear scalar DDE is stable if and only if a+ | b |< 0, or equivalently a < b < −a,
which is independent of the delay values. Note that this condition is a sufficient, but not a
necessary criterion for stability of linear systems. For instance, as it is shown in Fig. 2.2, all
the characteristic roots of a linear system with a = 0.5, b = −1, and τ = 1, have negative real
parts, i.e., the system is stable. However, this point lies outside the region bounded by two lines
a + b = 0 and a − b = 0. The exact stability condition for a scaler linear DDE is given by the
following delay-dependent criterion

Theorem 2 (Hayes theorem [172]) All roots of λ − a − be−λτ = 0, have negative real parts
if and only if

if b2 − a2 > 0, then: a+ b < 0, and
√
b2 − a2 <

1

τ
arccos(−a/b),

if b2 − a2 ≤ 0, then: a+ b < 0 (or equivalently −a < b < a).

which comprises the delay-independent condition given by the cone a+ | b |< 0. This condition is
depicted in the (a,b)-plane in Fig. 2.3 for τ = 1, as compared to the delay-independent condition
a+ | b |< 0. The shaded region shows the exact stability condition given by Theorem 2, whereas
the hatched region displays the delay-independent condition given by Theorem 1. It can be
seen that the delay-independent condition obtained by the presented approach provides a good
approximation to the exact delay-dependent condition.

2.2.2 Power spectrum of delay differential equations

We close this section by computing the power spectrum of DDEs with the aid of of Green’s
function method. In general, a functional DDE can be written as

L̂(∂/∂t)X(t) = F(X(t),X(t− τ)), (2.17)

where X(t) ∈ RN is the activity variable vector, the diagonal matrix operator L̂(∂/∂t) ∈ RN×N
includes the temporal operators, and F : RN ×RN → RN denotes the nonlinear vector function
at some resting state X0 ∈ RN , for instance, if L̂ = 0, then F(X0,X0) = 0, or if L̂ = 1, then
X0 = F(X0,X0). The system equations can be written as

L̂(∂/∂t)X(t) = Φ(X(t)) + Ψ(X(t− τ)), (2.18)

where those terms that have delays are separated from those terms without delays.
By adding an external input I(t) to the above system equation, we obtain

L̂(∂/∂t)X(t) = Φ(X(t)) + Ψ(X(t− τ)) + I(t), (2.19)
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Fig. 2.2. Characteristic roots of a linear scalar DDE given by ẏ(t) = ay(t) + by(t − τ), where
a = 0.5, b = −1, and τ = 1. Since all the roots have negative real parts, the system is stable.
The characteristic roots obtained by using Lambert function given by λ = 1

τW k(bτe
−aτ ) + a

for k ∈ −50, ..., 0, ..., 50 are represented as open red circles, whereas the blue asterisks show the
roots simulated by the spectral discretization of infinitesimal generator based on the Chebyshev
nodes.

with I(t) = I0 + ξ(t) ∈ RN , where I0 = (0, 0, ..., I0, ..., 0)> denotes the mean value of external
input, and ξ(t) = (0, 0, ..., ξ(t), ..., 0)> is a Gaussian white noise (c.f. Eq. (2.4)), which is projected
onto the j-th element of the activity variable. The high index > denotes the transposed vector
or matrix. Now, the resting state of the system i.e., X0 ∈ RN can be obtain from Φ(X0) +
Ψ(X0) + I0 = 0 if L̂ = 0 or X0 = Φ(X0) + Ψ(X0) + I0 if L̂ = 1. Linearizing this equation at
resting state X0 yields the following linear stochastic DDE

L̂(∂/∂t)Y (t) = AY (t) +BY (t− τ) + ξ(t), (2.20)

where Y (t) = X(t) − X0, and A, B ∈ RN×N are constant quadratic matrices such that
A ≡ JΦ(X0), and B ≡ JΨ(X0), where JΦ(X0) and JΨ(X0) are the Jacobian matrices for
functions Φ and Ψ, respectively, computed at the fixed point X0.

The solution of Eq. (2.20) for t→∞ is

Y (t) =

∫ ∞
−∞

G(t− t′)ξ(t′)dt′, (2.21)

with the matrix Green’s function G ∈ RN×N . Substituting Eq. (2.21) into Eq. (2.20) leads to

L̂(∂/∂t)G(t) = AG(t) +BG(t− τ) + 1δ(t), (2.22)
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Fig. 2.3. The stability region for a linear scalar DDE given by ẏ(t) = ay(t) + by(t− τ), where
τ = 1. The shaded region presents the exact condition driven by Hayes theorem [172], which
depends on the delay value (c.f. Theorem 2), whereas the hatched area shows the approximated
condition given by the cone a+ | b |< 0, which is independent of the delay value (c.f. Theorem
1).

with the unitary matrix 1 ∈ RN×N , where the Dirac delta function δ(t) is given by

δ(t) =
1

2π

∫ ∞
−∞

e−iωtdω, (2.23)

where ω denotes complex angular frequency. In addition, it can be shown that

L̂

(
∂

∂t

)
eiωt = L̂(ω)eiωt (2.24)

Applying the Fourier transform

G(t) =
1√
2π

∫ ∞
−∞

G̃(ω)eiωtdω, (2.25)

and substituting Eq. (2.23)-(2.25) into Eq. (2.22) yields∫ ∞
−∞

L̂G̃(ω)eiωtdω −
∫ ∞
−∞

AG̃(ω)eiωtdω −
∫ ∞
−∞

BG̃(ω)eiω(t−τ)dω =
1√
2π

∫ ∞
−∞

eiωtdω,

thus, the Fourier transform of the Green’s function of system can be written as

G̃(ω) =
1√
2π

[
L(ω)−A−Be−iωτ

]−1
. (2.26)
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The power spectral density matrix P (ω) of Y (t) is the Fourier transform of the auto-correlation
function matrix 〈Y (t)tY (t− T )〉 (Wiener-Khinchine Theorem) leading to [111]

P (ω) = 2κ
√

2πG̃(ω)G̃
>

(−ω).

Finally, by virtue of the specific choice of external input to the j-th element of the activity
variable, the power spectrum of i-th element just depends on one matrix component of the
matrix Green’s function by

Pi(ω) = 2κ
√

2πG̃i,j(ω)G̃i,j(−ω) = 2κ
√

2π
∣∣∣G̃i,j(ω)

∣∣∣2 . (2.27)

Applying this approach to a first order scalar linear DDE with additive Gaussian white noise
given by

dy(t)

dt
= ay(t) + by(t− τ) + ξ(t), (2.28)

yields the following Fourier transform of the Green’s function

G̃(ω) =
1√
2π

(
iω − a− be−iωτ

)−1
, (2.29)

and consequently, the power spectrum is

P (ω) =
2κ√
2π

1

(a+ b cos(ωτ))2 + (ω + b sin(ωτ))2
. (2.30)
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2.3 Neural population models

In this section we first describe mean-field approximation in order to model the activity of
large populations of neurons. Subsequently, a brief review of two well-established neural field
models for reproducing the EEG oscillations is provided: 1) Robinson model [173, 174, 23],
which includes excitatory and inhibitory cortical populations that are synaptically connected
to thalamic reticular and relay neuron populations by delayed thalamo-cortical axonal fibers.
The model is able to reproduce various features in EEG data recorded during different brain
activities. 2) A neural population model based on a recently developed neural field model of
anesthetic action (Hutt & Longtin) [28]. This model has a same topological configuration as
Robinson model, however, it distinguishes excitatory and inhibitory synapses. Both models are
based on the models of Wilson & Cowan [98], and Amari [99], which involve averages of synaptic
and neuronal activities over a population in small spatial patches and short time windows.

2.3.1 Neural field models

The oscillatory activities generated by thousands or millions of synchronized neurons at the
macroscopic level can be measured by the EEG recordings. A large body of evidence has revealed
that the brain activities across different behavioral states such as wakefulness, non-REM and
REM sleep, anesthesia and deep coma have their own distinct rhythmic EEG patterns [175, 29,
30, 173, 176, 177, 17, 19, 83]. In other words, the EEG observables and the behavioral states are
highly correlated such that the rhythmic pattern of traces in an EEG recording reflects the state
of the brain activity. In particular, neuroimaging studies have extensively shown that during the
transition from wakefulness to loss of consciousness, the characteristic features in EEG power
spectra can be used to track the level of consciousness [85, 178, 19, 18, 81, 179, 82].

It is generally assumed that the scalp-recorded EEG signals represent the aggregate synaptic
activity of large numbers of vertically oriented pyramidal cells [22]. Complete understanding
of the mechanisms underlying the generation of EEG rhythmic patterns requires the detailed
biophysical modeling of synapses and spiking neurons. However, the physiological topology of
real neuronal networks are rather unknown in details. Moreover, the detailed simulation of a
small realistic neural network is very computationally expensive. For instance, a small-scale
neural network such as a cortical column comprises a huge number of neurons (on the order
of 104-108 neurons), while each of them being synaptically connected to other 104-105 neu-
rons [20]. Relating the behavioral phenomena that are observed at the macroscopic scales to
the individual elements of such large ensembles is also extremely challenging. Indeed, most of
the coarse-scale observables such as EEG reflect the overall activity of a large population of
neurons. This aspect allows us to successfully simulate the empirical EEG signals by mean-
field approximations [180, 21, 181, 96, 92, 29, 30, 23, 182, 183]. Through a set of differential
equations or integral-differential equations, these models describe the average properties of neu-
ral ensembles, such as mean voltage or mean firing rate whilst their output variables can be
strongly linked to macroscopic experimental quantities such as Local Field Potentials (LFPs)
and EEG [97, 20, 184, 185, 26, 94]. Moreover, this description considers ensembles of excitatory
and inhibitory neurons, which incorporates the connection elements between neurons as exci-
tatory and inhibitory synapses. The coupling strengths, synaptic response functions, dendritic
dynamics, nonlinear somatic firing rates, and transmission delays in axonal propagation related to
non-local interactions are other important components of the mean-field models [186, 187, 93, 28].

The mathematical formulation of neural population activity have been triggered by the work
of Wilson & Cowan [98], and Amari [99]. Since then, many mean-field models have been proposed
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especially for describing cortical population dynamics [96, 97, 24, 188, 174, 173, 28]. These
works consider the cortex as a two-dimensional sheet of tissue with negligible thickness. They
also incorporate the interactions between excitatory and inhibitory neural populations which
are connected through excitatory and inhibitory synapses. Such models at an intermediate
mesoscopic level allows us to bridge the various spatial scales in the brain, from the microscopic
scale of single neurons to the macroscopic scale i.e., the level of EEG/MEG recordings [20, 27].

In general, modeling of neural activity using mean-field approximation can be divided into
two classes: neural field and neural mass models. The neural field models consider the neural
populations as recurrent networks of densely packed neurons, while the average is taken over
a small spatial patch on the millimeter scale and a short time window on the scale of few
milliseconds. In this kind of description, the quantity characterizing neural activity such as
average membrane potential of a neural population evolves over both space and time. Thus, the
spatiotemporal evolution of coarse-grained state variables is described in such models. Moreover,
the coupling of neuronal populations are associated with spatial parameters.

Neural field models can be simplified to the neural mass models [189]. For instance, it has
been extensively shown that the EEG can be described in a good approximation by spatially
constant neural population activity [29, 30, 23, 35, 36, 37]. Indeed, the neural mass models
are particular case of neural field models, since in this description the neural populations are
assumed to be located at a single point and the neural states are characterized by functions of
time only [190]. Therefore, the main difference between neural field and neural mass models is
that the former explicitly incorporate the spatial extension whereas it is neglected in the later
description.

In recent decades, neural field and neural mass models have been extensively employed to
explain different brain activities from local field potentials (LFP) to EEG/MEG signals [191, 192,
193, 194, 195, 196, 197, 95]. In particular, these models have been widely used to generate the
EEG alpha oscillations [180, 198, 199, 182, 33, 200, 201]. Alpha-band oscillations are predominate
oscillations in EEG brain signals recorded from occipital head region during wakeful relaxation
with closed eyes whereas it is reduced with open eyes, drowsiness and sleep [202, 203]. It has
been shown that the simulation results of such coarse-grained models display remarkably close
agreement with the empirical observations in resting state brain dynamics [32, 204, 205, 206, 207].
Furthermore, these approaches have been proven to be successful in reproducing key features of
electrical brain waves during sleep states [208, 209], general anesthesia condition [39, 40, 210, 24,
25, 28, 35, 211, 36, 37], and human epileptic seizures [23, 212, 213, 214, 31, 215, 176, 216, 217].
Other studies have also been reported that these type of modeling approaches are appropriate to
describe brain dynamics in neurological disorders and cognitive tasks [218, 219, 220, 221, 222,
223, 224, 225].

In the following, before describing two neural field models that have been found to reproduce
very well the characteristic features of spectra and evoked responses observed empirically, we
first briefly present the role of thalamo-cortical circuits in the brain activities, because the body
of models used in this thesis are based on the thalamo-cortical neural populations.

2.3.2 Thalamo-cortical circuits

It is known that the cortex, the thalamus, and the thalamo-cortical feedback loops contribute
in the EEG oscillations. However, the precise role of each structure to the dynamics of EEG
is unknown. While the macroscopic cortical activities are directly reflected in EEG data, the
thalamus acts as both the gate for sensory input to the cortex and the site for feedback from
cortical cells [226]. It has been shown that the specific changes in EEG patterns during the brain
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transition states can be determined by neural activities of the cortex, the thalamus and the
interactions between them [35, 36, 37]. Therefore, a population-level model of thalamo-cortical
system is a plausible candidate for investigating the mechanisms responsible for the various
features observed in EEG data [186, 29, 30, 23, 91, 227].

In the last years, a large number of studies using mean-field models have been devoted to
understand how EEG recordings are related to underlying brain activity [228, 23, 24, 176, 229, 35].
However, the exact neurobiological mechanisms that generate the EEG oscillatory signatures
along with its relation to behavioral states remain to be fully understood. It has been shown that
depend on the functional state of the brain, thalamo-cortical circuits are involved in generating
different spontaneous oscillatory patterns such as oscillatory tonic and burst firing, across a wide
range of frequencies from slow and spindle rhythms to gamma-frequency band [230, 228, 231, 232].
The reciprocal thalamo-cortical loops has been proposed to be responsible for normal EEG
oscillations during wake and sleep states [233]. Other researches illustrate that the thalamo-
cortical circuits crucially involve in the formation of sleep, normal physiologic activities [234,
235, 236], consciousness processing and anesthetic-induced unconsciousness [237, 44, 81, 238, 239],
processing of sensory information [240, 241, 242], attention regulation [243, 244, 245, 246], and
also synchronization of cortical activity [247, 248, 249, 250, 251, 252]. There are further evidences
showing that a change in these circuits can impair consciousness and induces spike-and-slow wave
discharges (SWD), which are essential features of the absence seizures [253, 254, 230, 228, 255]. It
has also been reported that mediating of T-type calcium channels and HCN-channels, which could
influence the excitation/inhibition balance in these circuits play an important role in regulating
thalamo-cortical rhythmicity and absence seizures [233, 256, 236]. In addition, clinical studies
have revealed that enhancing oscillations in the thalamo-cortical loops could lead to epileptic
seizures [257].

2.3.3 Robinson model

In the 1990’s David Liley and Jim Wright started developing partial differential equation mod-
els for neural population activity [96, 97]. Their works have inspired other teams, e.g., Peter
Robinson and colleagues, who developed a similar neural model which has been proven to be
very successful in reproducing key features of EEG signals recorded during different behavioral
states such as sleep [29, 34], anesthesia [35, 36], and seizures [176, 258].

The model incorporates key anatomic connectivities within the cortex, within the thalamus,
and between these structures: cortical, thalamic, cortico-thalamic and thalamo-cortical path-
ways. In addition, the model is furnished with synaptic and dendritic dynamics, nonlinearity of
the firing response, and finite axonal transmission speeds [259].

The body of the model is based on a population-level description of a single thalamo-cortical
module [173, 29] comprising four populations of neurons, namely excitatory (E) and inhibitory
(I) cortical population, a population built of thalamo-cortical relay neurons (S) and of thalamic
reticular neurons (R), as shown in Fig. 2.4. This model is based on the original idea of Lopes
da Silva et al., stating that the α-rhythm represents the noisy thalamic input signal band-pass
filtered by feedback-connected cortical and thalamic neural populations [180]. The details of the
model and the nominal parameter values are taken from the previous works [29, 30, 23]. Here
we just briefly describe the key concepts of the model. The average soma membrane potential
denoted by Va, for a = E, I, S,R is modeled by

Va(t) =
∑

b=E,I,R,S

hb(t)⊗ νabφb(t− τab), (2.31)
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Fig. 2.4. Schematic diagram of Robinson model [29, 30, 23]. The blue arrows indicate excitatory
connections while the red connections ending in filled circles denote inhibitory connections. The
symbols E, I, S, and R denote the excitatory and inhibitory cortical neurons, thalamo-cortical
relay, and thalamic reticular neurons, respectively. Moreover, the thalamo-cortical and cortico-
thalamic connections exhibit the same nonzero time delay τ .

where ⊗ represents the temporal convolution, and hb(t) denotes the mean synaptic response
function defined by

hb(t) =
αβb
α− βb

(
e−βbt − e−αt

)
, (2.32)

where α and βb (with units Hz) are the synaptic rise and decay rates of the synaptic response
functions, respectively. The synaptic decay rates and synaptic response functions depend on the
source neurons of type b only and are independent of the target neurons. In the following, the
subscript b in βb is dropped for the simplicity reasons. The model assumes identical excitatory
synaptic receptors with constant rise and decay rate. Inhibitory synaptic receptors are also
assumed to exhibit identical constant rise and decay rates. This strong approximation is taken
from a previous study [35] to be able to compare our results, while preliminary studies with more
realistic parameters show similar results (not shown).

The constants νab are the strengths of the connections from population of type b to population
of type a (in mVs). More precisely, νab = Nabsb, where Nab is the mean number of synapses from
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neurons of type b to type a, and sb is the strength of the response to a unit signal from neurons
of type b. Moreover, φb is the average firing rate of the population b (in Hz). The connections
between cortex and thalamus are associated with a same non-zero time delay, τab = τ , while the
delay term is assumed to be zero within the cortex and within the thalamus [91, 229].

By virtue of long-range axonal projections of excitatory cortical neurons and by assuming
the spatially-homogeneous dynamics on the cortex, the average firing rate φE obeys the damped
oscillator equation

DφE = S(VE), (2.33)

where the operator D is defined as

D =

(
1

γ

∂

∂t
+ 1

)2

, (2.34)

and γ is the cortical damping rate. Note that it is assumed that φE is approximately proportional
to the EEG. Moreover, the spatial spread of activity is very fast in other populations and the
activity variable can be approximated by a sigmoidal function as φb = S(Vb), for b = I, S,R.
The previous studies have considered a standard sigmoid formulation for the neuronal activation
function S(Va)

S(Va) =
Smaxa

1 + exp(−(Va − θa)/σa)
, (2.35)

where Smaxa denotes the maximum population firing rate, θa indicates the mean firing threshold
of neurons, and σa is related to the standard deviation of firing thresholds in population of type
a. More precisely, σa

√
3/π is the standard deviation of the threshold distribution in the neural

population. The transfer function defined by Eq. (2.35) takes into account the distribution of
firing thresholds of the neurons in the population [98] and the more similar the firing thresholds
in the neural populations the smaller σ and the steeper the sigmoidal function.

Conversely to the original model [29, 30, 23], we use a more realistic transfer function derived
from properties of type I-neurons given by [260]

S(Va) = Sig(Va, 0)− Sig(Va, ρ), (2.36)

with

Sig(Va, ρ) =
Smaxa

2

(
1 + erf

(
Va − θa − ρσ2

a√
2σa

))
e−ρ(Va−θa)+ρ2σ2

a/2, (2.37)

where the parameter ρ < ∞ reflects the properties of type I-neurons. Note that ρ → ∞ yields
the standard formulation assuming McCulloch-Pitts neurons [261], with Sig(V, ρ → ∞) = 0.
In contrast to the standard sigmoid function (2.35), the novel transfer function (2.36) is not
anti-symmetric to its inflection point anymore [261], and exhibits a larger nonlinear gain (slope)
for large potentials V > θ compared to small potentials V < θ, as illustrated in Fig. 2.5. This
asymmetry results from the firing properties of type-I neurons, see Refs. [260, 261] for more
details. Typically the sigmoidal shape of the transfer function leads to multiple resting states
and its asymmetry gives the resting states that are closer to the θ. In this context, we mention
another previous transfer function proposed by Freeman [262] to take into account an average
sub-threshold value of sodium channels.

The external input to the system is considered as a non-specific input to thalamo-cortical
relay neurons as

φN = 〈φN 〉+
√

2κξ(t), (2.38)
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Fig. 2.5. The novel population firing rate S(V ) taken from Eq. (2.36) and the corresponding
nonlinear gain dS(V )/dV in comparison to the well-known sigmoid function Sig(V, 0). Panel
(A) illustrates the mean firing rate functions and panel (B) presents the corresponding nonlinear
gains for the standard population firing rate (blue lines) and the novel transfer function (green
lines). Parameters are Smax = 100 Hz, θ = 15 mV, σ = 10 mV, ρ = 0.05 mV−1.

where 〈φN 〉 indicates its mean value and ξ(t) is a zero average Gaussian uncorrelated noise and
κ is the noise intensity.

In the following, we aim to derive a formula for modeling the experimentally observed EEG
power spectrum. It is important to point out that the theoretical power spectrum characterizes
small fluctuations about the resting state of the system. Thus, we first need to determine the
system resting state. The resting state of Eqs. (2.31) defined by dVa(t)/dt = 0 obey

V ∗E = νeeS(V ∗E) + νeiS(V ∗I ) + νesS(V ∗S ),
V ∗I = νieS(V ∗E) + νiiS(V ∗I ) + νisS(V ∗S ),
V ∗S = νseS(V ∗E) + νsrS(V ∗R) + 〈φN 〉,
V ∗R = νreS(V ∗E) + νrsS(V ∗S ),

(2.39)

where V ∗a denotes the resting state value of Va for a = E, I, S,R. Moreover Eq. (2.33) gives

φ∗E = S(V ∗E). Applying a temporal operator L̂ =
∂2

αβ∂t2
+ (

1

α
+

1

β
)
∂

∂t
+ 1 on the left-hand side

of Eqs. (2.31), the system equations convert to a set of coupled stochastic DDEs

L̂Va(t) =
∑

b=E,I,R,S

νabφb(t− τab). (2.40)

Subsequently, we linearize Eqs. (2.40) about the resting stateX0 = (V ∗E , V
∗
I , V

∗
S , V

∗
R)> and write

them in a general matrix form of a linear DDE as

L̂(∂/∂t)Y (t) = AY (t) +BY (t− τ) + ξ(t), (2.41)
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where

Y (t) =


φE(t)− φ∗E
VI(t)− V ∗I
VS(t)− V ∗S
VR(t)− V ∗R

 , L̂ =


L̃ D̃
K11

0 0 0

0 L̃ 0 0

0 0 L̃ 0

0 0 0 L̃

 ,

A =


K1 K2 0 0
K4 K5 0 0
0 0 0 K8

0 0 K10 0

 , B =


0 0 K3 0
0 0 K6 0
K7 0 0 0
K9 0 0 0

 , ξ(t) =


0
0√

2κξ(t)
0

 , (2.42)

with L̃ = (1 + iω/α)(1 + iω/β), D̃ = (1 + iω/γ)2, and

K1 = νee ,K2 = νei
∂SI [V ]

∂V
|V=V ∗

I
, K3 = νes

∂SS [V ]

∂V
|V=V ∗

S
,

K4 = νie , K5 = νii
∂SI [V ]

∂V
|V=V ∗

I
, K6 = νis

∂SS [V ]

∂V
|V=V ∗

S
,

K7 = νse , K8 = νsr
∂SR[V ]

∂V
|V=V ∗

R
, K9 = νre,

K10 = νrs
∂SS [V ]

∂V
|V=V ∗

S
, K11 =

∂S[V ]

∂V
|V=V ∗

E
.

As mentioned in the previous section, according to Wiener-Khinchine theorem, the power
spectral density matrix P (ω) of Y (t) is the Fourier transform of the auto-correlation function
matrix 〈Y (t)tY (t− T )〉 leading to

P (ω) = 2κ
√

2πG̃(ω)G̃
>

(−ω), (2.43)

where G̃(ω) is the Fourier transform of the matrix Green’s function and the high index > denotes
the transposed matrix [111].

Following [22, 29, 30], it is assumed that the activity of excitatory cortical neurons generates
the EEG, and by virtue of the specific choice of external input to thalamo-cortical relay neurons,
the power spectrum of the EEG is related to the Green’s function of linear deviations about the
resting state by [111]

PE(ω) = 2κ
√

2π
∣∣∣G̃1,3(ω)

∣∣∣2 , (2.44)

where

G̃(ω) =
1√
2π

[L̂−A−Be−iωτ ]−1

=
1√
2π


L̃ D̃
K11
−K1 −K2 −K3e

−iωτ 0

−K4 L̃−K5 −K6 0

−K7e
−iωτ 0 L̃ −K8

−K9e
−iωτ 0 −K10 L̃


−1

. (2.45)

It is important to note that the power spectrum analysis is valid only if the system resting
states are stable and hence the fluctuations do not diverge. We have taken care of this additional
condition and all given parameters guarantee the existence and stability of the resting states.
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Fig. 2.6. Time evolution of membrane potential of cortical pyramidal neurons VE governed by
Eq. (2.31) simulated with the parameter set displayed in Table 2.1. The numerical simulations
are started with different initial values for the system variables. The solid red lines indicate the
stable resting states whereas the dashed black line shows the unstable solution. The gray and
blues trajectories converge to the larger and smaller stable resting state, respectively, since they
are initialized in the basin of attraction of the respective solution. The green trajectories started
on the unstable resting state head toward one of the stable solutions.

To investigate the stability of the system resting states, we neglect the external input, since in
a first approximation, the stability of a linear system does not depend on the external input
[111]. For nominal model parameters listed in Table 2.1, three resting states given by X01 =
[2.95, 2.95, 1.84, 4.61], X02 = [35.80, 35.80, 25.34, 99.30], X03 = [149.57, 149.57, 100.99, 149.92]
have been obtained, where X01 < X02 < X03. Then, by inserting the ansatz Y (t) = Ceλt into
Eq. (2.41) we arrive at the following characteristic equation

det
(
λI −A−Be−λτ

)
= 0, (2.46)

where the roots of this equation determine the stability of system resting states. Our analysis
reveals that X01 and X03 are linearly stable, whereas X02 is unstable. The number and stability
of the resting states can be confirmed by iterative numerical scheme with different initial guess
values. For instance, the membrane potential’s time series of cortical pyramidal neurons VE with
different initial values for the system state variables are displayed in Fig. 2.6. It can be observed
that there exists three resting states in which the smaller and larger solutions are stable whereas
the middle one is unstable. This result demonstrates that the above values calculated by fsolve
function in MATLAB are correct.

Now we can compute the model power spectrum by linearizing the system equations around
the stable resting states. The theoretical power spectra governed by Eq. (2.44) are displayed in
Fig.2.7. The information about contribution of each frequency band to the EEG signals is often
presented as a power spectrum with frequency on the x axis and power estimated by amplitude
squared on the y axis. From panel A, we observed that the spectral power obtained by linearizing
the equations about the smaller resting state, i.e., X01 reproduces the important human EEG
features such as the alpha and beta peaks at frequencies f ≈ 1/(2τ), 2/(2τ), respectively, and
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Fig. 2.7. Power spectra of φE computed from linearization about different resting states (c.f.
Eq. (2.44)). (A) The spectral power density obtained by linearizing system equations around
the smaller resting state reproduces specific human EEG features. (B) No peak can be observed
when the spectrum is computed by linearization about the larger resting state.

the asymptotic low- and high-frequency behaviors [200]. However, no peak can be seen in the
spectrum resulting from the linearization around the larger solution X03 (c.f. panel B).

2.3.4 A thalamo-cortical model to reproduce the EEG rhythms

In this section we consider a thalamo-cortical neuronal population model based on the work of
Hutt & Longtin [28], which extends previous cortical models [173, 174, 23] by distinguishing
the excitatory and inhibitory synapses. The model consists of a network of four populations of
neurons: cortical pyramidal neurons (E), cortical inhibitory neurons (I), thalamo-cortical relay
neurons (S) and thalamic reticular nucleus (R), as shown schematically in Fig. 2.8. Note that in
this model the connection from population S to I is neglected for simplicity reasons. In addition,
the long-range propagation of the signals has been considered by the connection between cortex
and thalamus associated with a constant time delay and the model closely follows [229, 91]
showing that long connections between cortico-cortical populations through white matter are
not necessary to describe experimental EEG dynamics.

The underlying model considers an ensemble of neurons on a mesoscopic scale which includes
two types of neurons, namely excitatory and inhibitory cells [28]. The connection elements
between neurons are excitatory and inhibitory chemical synapses in which both types of synapses
may occur on dendritic branches of both cell types. The present model considers AMPA/NMDA
and GABAA synaptic receptors and assumes spatially extended populations of both neuron
types.

In the following the key concepts of the model are described and we derive a formula for the
EEG power spectrum. Let us consider spatially extended populations of excitatory and inhibitory
neurons on the order of a few hundred micrometers. Assume that the neural population of type
a receives the incoming firing rates Pe(x, t) and Pi(x, t) at spatial location x and time t, which
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Table 2.1. Model parameters, their symbols, and nominal values in Robinson model [23].

Parameter Symbol Nominal value

Maximum firing-rate of all populations Smax 250 Hz
Mean firing threshold of all populations θ 15 mV
Firing rate variance of all populations σ 10 mV
Type-I population effect constant of all populations ρ 0.08 mV−1

Synaptic rise rate α 200 s−1

Synaptic decay rate β 50 s−1

Synaptic strength from E to E neurons νee 1.2 mVs
Synaptic strength from E to I neurons νie 1.2 mVs
Synaptic strength from E to S neurons νse 1.2 mVs
Synaptic strength from E to R neurons νre 0.4 mVs
Synaptic strength from I to I neurons νii -1.8 mVs
Synaptic strength from I to E neurons νei -1.8 mVs
Synaptic strength from S to E neurons νes 1.2 mVs
Synaptic strength from S to I neurons νis 1.2 mVs
Synaptic strength from S to R neurons vrs 0.2 mVs
Synaptic strength from R to S neurons νsr -0.8 mVs
Mean value of external input 〈φN 〉 1 mV
Intensity of external noise κ 0.1 mV
Cortical damping rate γ 150 s−1

Transmission delay between cortex and thalamus τ 40 ms

are originated from excitatory and inhibitory cells (or terminate at excitatory and inhibitory
synapses), respectively. Then, presynaptic population firing rates arrived at excitatory (e) or
inhibitory (i) synapses convert to the mean excitatory and inhibitory postsynaptic potentials
V e
a (t) and V i

a (t), respectively, by the convolution

V e,i(x, t) =

∫ t

−∞
he,i(t− t′)Pe,i(x, t′)dt′, (2.47)

where the functions he(t) and hi(t) indicate the synaptic response function of excitatory and
inhibitory synapses, respectively,

he(t) = ae
αeβe
βe − αe

(
e−αet − e−βet

)
, hi(t) = ai

αiβi
βi − αi

(
e−αit − e−βit

)
, (2.48)

where 1/αe and 1/αi are the characteristic rise times of the response function for excitatory
and inhibitory synapses, respectively, and 1/βe and 1/βi are the corresponding characteristic
decay times. In general, the dynamics of the synapses can be different to each other, but here for
simplicity reasons, it is assumed that all excitatory synapses on excitatory and inhibitory neurons
are identical, which however is possible to be distinguished easily by increasing the number of
model equations (same holds for inhibitory synapses). Moreover, the parameters ae and ai stand
for the average synaptic gains i.e., the level of excitation and inhibition, respectively. Note that
the mean excitatory and inhibitory charge transfers through the synaptic cleft denoted by ρe,i
are equal to the time integral ρe,i =

∫∞
0 he,i(t)dt, where ρe = ae and ρi = ai.
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Fig. 2.8. Schematic of the thalamo-cortical model. The blue arrows indicate excitatory connec-
tions and the red connections with filled circle ends represent inhibitory connections. The model
consists of four types of neural populations, namely, cortical excitatory and inhibitory neurons,
thalamo-cortical relay, and thalamic reticular neurons denoted by E, I, S, and R, respectively.
Furthermore, the connections between cortex and thalamus are associated with the same nonzero
time delay τ .

Following [29, 23, 263], the integral equations (2.47) may be formulated as differential equa-
tions

L̂eV
e(x, t) = aePe(x, t), L̂iV

i(x, t) = aiPi(x, t), (2.49)

with

L̂e(∂/∂t) =
1

αeβe

∂2

∂t2
+

(
1

αe
+

1

βe

)
∂

∂t
+ 1,

L̂i(∂/∂t) =
1

αiβi

∂2

∂t2
+

(
1

αi
+

1

βi

)
∂

∂t
+ 1.

(2.50)

In more general mathematical terms, he,i(t) are the Green’s functions for the temporal operators
L̂e,i with L̂e,ihe,i(t) = δ(t), where δ(t) represents the Dirac delta-function.

Moreover, in each neural population, the mean population firing rates Pe,i which depend on
the effective mean potential can be approximated by a sigmoidal function. We identify the mean
population firing rates with the transfer function S(V ) defined by Eq. (2.36). In the following,
the mean firing rate function in the cortex SC [·] is considered to be different with the thalamic
firing rate function ST [·], while for the simplicity reasons, it is identical in the cortex and for
relay and the reticular populations.

External input to the system originates from other neural populations and is considered as a
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non-specific input to relay neurons:

I(x, t) = I0 + ξ(x, t), (2.51)

where I0 indicates its mean value and ξ(x, t) is a Gaussian white noise with

〈ξ(x, t)〉 = 0, 〈ξ(x, t)ξ(x′, t′)〉 = 2κδ(t− t′)δ(x− x′), (2.52)

where 〈.〉 denotes the ensemble average and κ is the intensity of the driving noise.
First, let us formulate the equations describing the excitatory and inhibitory postsynaptic

potentials (PSPs) of both excitatory and inhibitory cell types. The mean potentials V c
a , evoked at

excitatory (c = e) and inhibitory (c = i) synapses, for a ∈ {E, I,R, S} in the cortical pyramidal
neurons (E), cortical inhibitory neurons (I), the thalamo-cortical relay neurons (S) and thalamic
reticular neurons (R) obey

L̂eV
e
E(x, t) = KEE(x) ∗ SC

[
V e
E(x, t)− V i

E(x, t)
]

+

KES(x) ∗ ST
[
V e
S (x, t− τ)− V i

S(x, t− τ)
]
,

L̂iV
i
E(x, t) = KEI(x) ∗ SC

[
V e
I (x, t)− V i

I (x, t)
]
,

L̂eV
e
I (x, t) = KIE(x) ∗ SC

[
V e
E(x, t)− V i

E(x, t)
]
,

L̂iV
i
I (x, t) = KII(x) ∗ SC

[
V e
I (x, t)− V i

I (x, t)
]
,

L̂eV
e
S (x, t) = KSE(x) ∗ SC

[
V e
E(x, t− τ)− V i

E(x, t− τ)
]

+ I(x, t),

L̂iV
i
S(x, t) = KSR(x) ∗ ST [V e

R(x, t)] ,

L̂eV
e
R(x, t) = KRE(x) ∗ SC

[
V e
E(x, t− τ)− V i

E(x, t− τ)
]

+

KRS(x) ∗ ST
[
V e
S (x, t)− V i

S(x, t)
]
, (2.53)

where the parameter τ denotes the transmission time delay between cortex and thalamus, and
Kab(x) ∗ S[V (x, t)] =

∫
ΩKab(x− y)S[V (y, t)]dy. The spatial kernel functions Kab(x− y) reflect

the synaptic connection strengths in population a originating from population b in the spatial
domain Ω. According to previous studies, we assume that the EEG can be described in a good
approximation by spatially constant neural population activity [29, 23], we choose Kab(x− y) =
Kabδ(x− y) with the Dirac function δ(·) and thereby Kab(x) ∗ S[V (x, t)] = KabS[V (x, t)].

It should be noted that parameter V c
a in the above equations indicates the effective potential,

i.e., the deviation of the measured potential with respect to the rest potential. Furthermore, as
mentioned in the previous section, the power spectrum is modeled by small fluctuations about the
resting state of the system. Thus, it is necessary to first compute the system resting state. In the
case of constant external input I(t) = I0, the spatially-homogeneous resting state of Eqs. (2.53)
can be obtained by setting to zero all time derivatives, i.e., dV e,i

a /dt = 0, for a ∈ {E, I, S,R}
leading to

V ∗eE = KEESC
[
V ∗eE − V ∗iE ] +KESST [V ∗eS − V ∗iS

]
,

V ∗iE = fC(p)KEISC
[
V ∗eI − V ∗iI

]
,

V ∗eI = KIESC
[
V ∗eE − V ∗iE

]
,

V ∗iI = KIISC
[
V ∗eI − V ∗iI

]
,

V ∗eS = KSESC
[
V ∗eE − V ∗iE

]
+ I0,

V ∗iS = fT (p)KSRST [V ∗eR ] ,
V ∗eR = KRESC

[
V ∗eE − V ∗iE

]
+KRSST

[
V ∗eS − V ∗iS

]
.

(2.54)
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By linearizing Eqs. (2.53) about the resting state X0 = (V ∗eE , V ∗iE , V
∗e
I , V ∗iI , V

∗e
S , V ∗iS ,

V ∗eR )> obtained from Eqs. (2.54), we can write them in a general matrix form of a linear DDE
as follows

L̂(∂/∂t)Y (t) = AY (t) +BY (t− τ) + ξ(t), (2.55)

where Y (t) ∈ RN denotes the small deviations from the system resting states, and the diagonal
matrix operator L̂(∂/∂t) ∈ RN×N includes all temporal operators L̂e,i. Moreover, ξ(t) ∈ RN
denotes the input Gaussian white noise to the system and A, B ∈ RN×N are constant matrices
where N is the system dimension (here N=7). The solution of Eqs. (2.55) for t→∞ is

Y (t) =

∫ ∞
−∞

G(t− t′)ξ(t′)dt′, (2.56)

with the matrix Green’s function G ∈ RN×N . Substituting Eq. (2.56) into Eq. (2.55) leads to

L̂(∂/∂t)G(t) = AG(t) +BG(t− τ) + 1δ(t), (2.57)

with the unitary matrix 1 ∈ RN×N . Then the Fourier transform of the matrix Green’s function

G̃(ν) =
1√
2π

[
L(ν)−A−Be−2πiντ

]−1
, (2.58)

and as mentioned previously, the Wiener-Khinchine theorem defines the power spectral density
matrix to

P (ν) = 2κ
√

2πG̃(ν)G̃
>

(−ν),

where the high index > denotes the transposed vector or matrix. Essentially, we assume that
the EEG is generated by the activity of pyramidal cortical cells. By virtue of the specific choice
of external input to relay neurons, the power spectrum of the EEG just depends on one matrix
component of the Green’s function by

PE(ν) = 2κ
√

2π
∣∣∣G̃1,5(ν)

∣∣∣2 . (2.59)

In detail, we find

Y (t) = (V e
E(t)− V ∗eE , V i

E(t)− V ∗iE , V e
I (t)− V ∗eI , V i

I (t)− V ∗iI ,
V e
S (t)− V ∗eS , V i

S(t)− V ∗iS , V e
R(t)− V ∗eR )>,

ξ(t) = (0, 0, 0, 0,
√

2κξ(t), 0, 0)>, and the diagonal matrix L̂(∂/∂t) with the entries L̂1,1 = L̂3,3 =
L̂5,5 = L̂7,7 = L̂e(ν), and L̂2,2 = L̂4,4 = L̂6,6 = L̂i(ν), and

A =



K1 −K1 0 0 0 0 0
0 0 K3 −K3 0 0 0
K4 −K4 0 0 0 0 0
0 0 K5 −K5 0 0 0
0 0 0 0 0 0 0
0 0 K5 −K5 0 0 K7

0 0 0 0 K9 −K9 0


, B =



0 0 0 0 K2 −K2 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
K6 −K6 0 0 0 0 0
0 0 0 0 0 0 0
K8 −K8 0 0 0 0 0


,

with
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L̂e(ν) =

(
1 +

2πiν

αe

)(
1 +

2πiν

βe

)
, L̂i(ν) =

(
1 +

2πiν

αi

)(
1 +

2πiν

βi

)
,

K1 = KEE
dSC [V ]

dV
|V=(V ∗e

E −V ∗i
E ), K2 = KES

dST [V ]

dV
|V=(V ∗e

S −V ∗i
S ),

K3 = KEI
dSC [V ]

dV
|V=(V ∗e

I −V ∗i
I ), K4 = KIE

dSC [V ]

dV
|V=(V ∗e

E −V ∗i
E ),

K5 = KII
dSC [V ]

dV
|V=(V ∗e

I −V ∗i
I ), K6 = KSE

dSC [V ]

dV
|V=(V ∗e

E −V ∗i
E ),

K7 = KSR
dST [V ]

dV
|V=V ∗e

R
, K8 = KRE

dSC [V ]

dV
|V=(V ∗e

E −V ∗i
E ),

K9 = KRS
dST [V ]

dV
|V=(V ∗e

S −V ∗i
S ),

G̃(ν) =
1√
2π



L̂e(ν)−K1 K1 0 0 −K2e
−2πiντ K2e

−2πiντ 0

0 L̂i(ν) −K3 K3 0 0 0

−K4 K4 L̂e(ν) 0 0 0 0

0 0 −K5 L̂i(ν) +K5 0 0 0

−K6e
−2πiντ K6e

−2πiντ 0 0 L̂e(ν) 0 0

0 0 0 0 0 L̂i(ν) −K7

−K8e
−2πiντ K8e

−2πiντ 0 0 −K9 K9 L̂e(ν)



−1

. (2.60)

Note that the constants Ki, i = 1, . . . , 9 are proportional to the nonlinear gain dS(V )/dV
computed at the system stationary state.

It is important to point out that in the notation that has been presented in this section,
the strengths of connections denoted by Kab are positive constants, in contrast to Robinson
model which the connections originated from inhibitory populations (νii, νei, νsr) should have
negative values. Moreover, the model does not consider explicitly the spatially extended dendritic
branches, however, one can easily consider a damped wave equation for the axonal propagation
in the cortex. Considering an identical synaptic response function for excitatory and inhibitory
synapses i.e., αe = αi, βe = βi, accompanied by Kii = −νii, Kei = −νei, Ksr = −νsr, the system
equations given by Eqs. (2.53) simplify to the equations in Robinson model.

In the subsequent chapters, we employ the presented neural population models to reproduce
the specific features of EEG rhythms observed in general anesthesia. It is shown how the mod-
eling approach shed some more light on the neural mechanisms underlying the EEG recordings
during behavioral state changes such as the transition from awake condition to anesthetic-induced
sedation.

2.4 Conclusion

The thalamo-cortical circuits play an important role in generating the EEG patterns during
different states of brain functioning. Moreover, since most of the brain imaging data such as EEG
signals reflect the overall activity of a large population of neurons, mean-field models provide
a physiologically more accurate description of such macroscopic scale observables. Therefore, a
population-level model of thalamo-cortical system is a plausible candidate for investigating the
mechanisms responsible for the various features observed in EEG data during different brain
functional states.
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Abstract

The role of extra-synaptic receptors in the regulation of excitation and inhibition in the brain
has attracted increasing attention. Because activity in the extra-synaptic receptors plays a
role in regulating the level of excitation and inhibition in the brain, they may be important
in determining the level of consciousness. In the present chapter, we first review briefly the
literature on extra-synaptic GABA and NMDA receptors and their affinity to anesthetic drugs.
Then the effects of anesthetic propofol on synaptic and extra-synaptic receptors located in cortical
and thalamic neural populations are modelized. In this chapter, we show how the effect of the
anesthetic drug propofol on GABAergic extra-synaptic receptors results in changes in neural
population activity and the EEG signals. Our results indicate that increased tonic inhibition in
cortical inhibitory neurons cause a dramatic increase in the power of both δ− and α− bands.
Conversely, the effects of increased tonic inhibition in cortical excitatory neurons and thalamic
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relay neurons have the opposite effect and decrease the power in these bands. The increased
δ−activity is in accord with observed data for deepening propofol anesthesia; but is absolutely
dependent on the inclusion of extra-synaptic (tonic) GABA action in the model.

3.1 Function of extra-synaptic receptors

In recent years, a large amount of experimental literature has revealed characteristic spectral
signal changes in electroencephalographic data (EEG) and Local Field Potentials (LFPs) during
general anesthesia [18, 82, 179, 86, 264]. Besides the experimental studies, several theoreti-
cal neural models have been proposed to explain certain EEG signal features observed during
anesthesia [81, 114, 113, 116, 38, 215, 265, 25, 266, 31, 260]. Although these studies may incor-
porate realistic neurobiological details of the brains’ network topology and neuronal function,
they have simplified dramatically the anesthetic action by considering only synaptic excitatory
and inhibitory receptors. Most of the previous studies describing the EEG spectral power during
general anesthesia have considered the effects of anesthetics only on the synaptic receptors in
purely cortical or thalamo-cortical neural populations. However, there is a growing amount of
experimental research that has revealed the importance of extra-synaptic receptors (ESR) for
neural interactions in general [267, 268], and for anesthesia especially, see Refs. [261, 269, 13] and
the references therein. To elucidate the role of ESR in the context of anesthesia, one approach
might be to do a theoretical study of a realistic neural population model which reproduces the
characteristic signal features observed in EEG. To perform such a theoretical study, it is neces-
sary to incorporate physiological properties of ESRs into neural population models. The present
chapter aims to point out the role of anesthetic effects on ESRs in explaining experimental EEG
power spectra.

As mentioned in chapter 1, GABA receptors are a large and important class of ionotropic
receptors. These receptors are located in the neuron’s membrane and respond to the neuro-
transmitter GABA by opening Cl− channels and inducing an inward hyperpolarising membrane
current. This response may either be: phasic at synaptic receptors or, tonic at ESR which lie
distant from synaptic terminals [270, 271, 272, 273, 269, 274]. The phasic response evolves on a
time scale of 10− 200 ms whereas tonic response evolves on a much longer time scale [275, 276].

The precise biochemical origin of tonic inhibition is still heavily debated [277, 278]. A rather
simple and intuitive model explains the tonic current as a spillover of excess neurotransmitters
from synapses. This is due to incomplete GABA uptake by nearby synaptic GABAA-receptors.
The remaining neurotransmitter is thus able to diffuse to more distant GABAA-receptors via
extracellular space [277, 273, 279, 280]. This spillover may explain the longer time scale of
tonic responses found experimentally. In addition, this explanation implies that even small
concentrations of neurotransmitters are sufficient to generate tonic activity because of the high
sensitivity of ESRs.

The effect of extra-synaptic receptors on the dendritic activity has not attracted much atten-
tion. This may because there are only a relatively small number of such receptors as compared
to synaptic receptors [281, 277]. Moreover, only recently have experimental studies been able
to classify and localize different sub-types of GABAA receptors [273, 277]. GABAA receptors
are pentameric ligand-gated ion channels and it has been found that δ−sub units of GABAA
receptors occur exclusively at ESRs [269, 277, 282, 283, 284]. This indicates a specific role of
these receptors for the neural information processing in general with specific implications in
diseases [267] and consciousness [281].

Tonic inhibition induced by extra-synaptic GABAA-receptors represents a persistent increase
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in the cell membrane’s conductance. On the single neuron level, this diminishes the membrane
time constant and, consequently, reduces the size and duration of excitatory post-synaptic poten-
tials propagating on the dendrite. Hence tonic inhibition reduces the excitability of the membrane
and increases the effective firing threshold [277]. At the neural population level, extra-synaptic
receptors affect the excitability of interneuron-pyramidal cell networks and thus modify network
oscillations [272]. Kopanitsa [281] argues that the sustained spatially widespread tonic inhibition
is energetically more effective for the system to diminish neural population activity than short-
lasting local phasic inhibition, since lower neurotransmitter concentrations are sufficient. The
critical factor in this mechanism is the the relatively high sensitivity of ESRs to modulations by
anesthetic agents [277, 74, 270, 285]. The brain areas that have been shown to be affected by
anesthetic-induced tonic inhibition are the hippocampus [286], brain stem [287], cerebellum [285],
and the thalamus [269]. Since these areas are supposed to play a role in general anesthesia [13],
ESRs may mediate clinical anesthetic effects, such as hypnosis and amnesia [288]. Thus it is
reasonable to argue that GABAA ESRs set the background inhibition of neural populations and
the brain network and mediate slow consciousness phenomena, such as loss of consciousness,
sleep or arousal [281].

Converse to GABAergic receptors, NMDA receptors respond to the neurotransmitter glu-
tamate by excitatory inward Na+ and Ca2+ currents and K+ outward currents. The response
of NMDA receptors to glutamate depends on their spatial location with respect to synaptic
terminals and the presence of co-agonists. A recent experimental study has revealed that the
population of NMDA receptors, which are close to synaptic terminals, are primarily activated
by the co-agonist d-serine in the presence of glutamate; while extra-synaptic NMDA receptors
(more distant from the synaptic terminals) respond primarily to glutamate and the co-agonist
glycine [289, 290]. D-serine and glycine are endogenous amino acids found naturally in the
brain (d-serine is a derivative of glycine). Similar to GABAergic ESRs, it has been shown that
there exists a significant ambient glutamate concentration which induces a tonic excitatory cur-
rent [291, 292]. This current is evoked primarily at extra-synaptic NMDA receptors [293] and may
be regulated by other cells, such as neighboring astrocytes [292, 294], which control glutamate
uptake and also synthesize d-serine [295].

Commonly-used GABAergic anesthetic drugs directly modify the corresponding receptors.
However various anesthetics are also known to affect the endogenous co-agonists of NMDA re-
ceptors [296, 289, 297]. Hence, the possible anesthetic effect on NMDA receptors is more complex
and indirect than for GABAergic ESRs. There is a large class of NMDA receptor antagonists,
that inhibit the excitatory action of NMDA receptors. These anesthetics induce so-called disso-
ciative anesthesia [298] leading to amnesia and analgesia without depressing respiration, but also
characterized by distorted perceptions of sight and sound and feelings of dissociation from the
environment. An example of a dissociative anesthetic drug is the inhalational anesthetic xenon
which - amongst other actions - binds primarily to the extra-synaptic glycine site of NMDA
receptors [299] and attenuates long term potentiation present in the hippocampus by reducing
extra-synaptic receptor currents [300].

To understand how the anesthetic effect of extra-synaptic receptor activity on the micro-
scopic single neuron scale could lead to changes in EEG and behavior that can be observed at
macroscopic scales, it is necessary to establish a bridge between the two scales. This bridge may
be formulated as a dynamical theoretical model. As mentioned in the previous chapter, neural
population models represent a good candidate for a dynamic description of neural activity at an
intermediate mesoscopic scale [27, 301, 22]. For more details see section 2.3 of chapter 2. An
increasing number of theoretical studies have used neural population models to describe signal
features in LFPs and EEG observed during anesthesia [25, 116]. Most of these studies take into
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Chapter 3. Modeling the anesthetic action on synaptic and extra-synaptic receptors

account anesthetic action on excitatory and/or inhibitory synapses [81, 31, 210, 28, 35] while few
consider extra-synaptic receptors [302]. This link between the synaptic receptor properties in
an ensemble of neurons and the average population dynamics is straight-forward, since classical
neural population models already involve the average synaptic response function. The situation
is different for extra-synaptic receptors, since their action is not incorporated into the classi-
cal models. A very recent work has filled this gap [260]. This theoretical work demonstrated
a method to include mathematically extra-synaptic GABAA receptor action in neural popula-
tion models; which enables researchers to study how changing anesthetic extra-synaptic receptor
action modifies spectral features in the EEG, which might then be observed experimentally.

In the following section we first modelize the effects of anesthetic propofol on synaptic and
extra-synaptic receptors located in cortical and thalamic neural populations. Subsequently we use
the Robinson neural population model (c.f. section 2.3.3 of chapter 2) involving anesthetic synap-
tic inhibition; and then extend this model by including the effects of extra-synaptic GABAergic
receptor action in the presence of the anesthetic drug propofol. With the help of this model,
we demonstrate the role of extra-synaptic GABAergic inhibition, and the importance of tonic
inhibition in the cortical inhibitory neuronal population, in explaining the frontal EEG power
spectra recorded during propofol induced sedation.

3.2 Effect of propofol on cortical and thalamic neural populations

According to experimental results, it is now widely accepted that anesthetic agents act by bind-
ing directly to specific protein targets [3]. While it has been reported that many receptors and
molecular targets contribute to general anesthesia, there is a general agreement that GABAA

receptors are important in mediating the inhibition during propofol administration [16]. It has
been shown that propofol increases the decay time constant of GABAA synapses, and hence
increases the total charge transfer in these synapses [9]. Interestingly, Kitamura et al. [47] have
shown experimentally that propofol has a negligible effect on the amplitude of synaptic response
functions in cortical neurons, whereas it markedly increases amplitude, decay time, and thus
charge transfer of GABAA receptors of inhibitory synapses located in relay neurons in the thala-
mic ventrobasal complex [48]. Since GABAA receptors mediate most of the inhibitory synaptic
transmission, the present model assumes that the inhibitory synaptic transmission within cortex
and thalamus are mediated by GABAA receptors and GABAB receptors are neglected.

In order to mimic the latter experimental findings, we assume that increasing propofol con-
centration decreases the decay rate of the inhibitory synaptic response function βi by βi = β0

i /p
with p ≥ 1 [38], where β0

i denotes the inhibitory decay rate in the absence of propofol. The fac-
tor p reflects the on-site concentration of propofol in the neural populations and p = 1 indicates
the baseline condition. Increasing p leads to a decrease in the decay rate constant of inhibitory
synapses and thereby an increase in the charge transfer in these synapses.

Consider the following synaptic response function for inhibitory synapses

hi(t) = aifj(p)
αiβi
αi − βi

(
e−βit − e−αit

)
, (3.1)

where 1/αi and 1/βi are the characteristic rise and decay times of the inhibitory response func-
tion, respectively. The function fj(p) reflects the action of propofol on the GABAergic synaptic
receptors and is proportional to the charge transfer in these receptors. From Fig. 2.4, afferents
from thalamic (T) reticular neurons and cortical (C) inhibitory neurons terminate at GABAer-
gic synaptic receptors, i.e., j ∈ {C, T}. In the following, the function fj will be estimated from
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3.2. Effect of propofol on cortical and thalamic neural populations

experimental data. Note that for simplicity reasons, here it is assumed that the decay rate of
inhibitory synapses is identical in all neural populations under study. However, it is possible
to be distinguished easily by increasing the number of model parameters. Based on the experi-
mental findings, cortical inhibitory synapses retain their response amplitude while changing the
anesthetics concentration [47, 28] leading to the relative increase of the charge transfer

fC(p) = aiΓ(αi, β
0
i )/Γ(αi, βi), (3.2)

with

Γ(α, β) =
αβ

α− β
[
(α/β)

−β
α−β − (α/β)

−α
α−β
]
,

i.e., Γ(αi, βi) = hi(t0) is the peak amplitude of hi(t) at time t0 = ln(αi/βi)/(αi−βi). This choice
fixes the maximum of cortical response function to hmaxC = aiΓ(αi, β

0
i ), which is independent of

the action of propofol [35]. Conversely propofol increases the amplitude of evoked inhibitory
post-synaptic currents in the ventrobasal relay neurons [79]. To take this effect into account the
relative increase of the charge transfer in thalamic GABAA receptors is

fT (p) ≈ aiAr(p)Γ(αi, β
0
i )/Γ(αi, βi), (3.3)

with the relative amplitude Ar(p). This choice determines the maximum of thalamic response
function to hmaxT = aiΓ(αi, β

0
i )Ar(p), i.e., the maximum response increases with Ar(p) under

the condition Ar(1) = 1. This choice is motivated by previous studies of cortical GABAer-
gic synapses [35]. An optimal fit of Ar to experimental data yields Ar(p) ≈ 1.55 ln(1.49 +
0.42 exp(p)) ≈ p0.42, cf. Fig. 3.1. The response functions hi(t) for cortical and thalamic recep-
tors subject to the anesthetic concentration factor p are displayed in Fig. 3.2 illustrating the
increasing response amplitude for thalamic receptors compared to the cortical receptors.
We point out that, by definition, the charge transfer in the respective receptors is proportional to
fC(p) and fT (p). Since the charge transfer reflects the level of inhibition, the relation of thalamic
to cortical inhibition

fT /fC ≈ p0.42 > 1,

is an increasing function of p, i.e. the larger the anesthetic concentration the stronger is the
anesthetic-induced thalamic inhibition compared to cortical inhibition.
Finally, we mention that the propofol concentrations in Fig. 3.1 are equivalent to the interval
[0; 0.53µg/ml] for a propofol molar mass of 178g. This concentration is the on-site concentration
determined in the in-vitro experiment of Ying & Goldstein [79]. This concentration is not neces-
sarily similar to the blood-plasma propofol concentrations in the experiments (c.f. Fig. 3.3) due
to pharmaco-dynamic effects, e.g. caused by the blood-brain barrier. The uncertain relationship
between on-site concentrations and blood plasma concentrations represents an uncertainty in the
current model.

The GABAergic ESR tonic inhibition can be represented in the model as a constant shift
of the firing threshold in neural population models [260]. For simplicity, we assume a linear
relationship between the anesthetic concentration parameter p and the extra-synaptic threshold
shift

θa = θ0 + (p− 1)ka (3.4)

with the mean firing threshold θ0 (with unit mV) in the absence of propofol and the extra-synaptic
anesthetic sensitivity ka > 0. Here, (p − 1)ka is the tonic inhibition induced by extra-synaptic
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Fig. 3.1. Effect of propofol on thalamic GABAA-receptors extracted from a previous experi-
mental study [79, Fig. 5]. (A) The factor p = β0

i /βi of evoked IPSCs in a relay neuron (taken
from the experimentally measured normalized decay time) subject to the propofol on-site con-
centration c (red square) and the corresponding fitted function (blue line) p(c) = k1 ln(k2 +k3c).
(B) The experimentally measured normalized amplitude A(c)/A0 of evoked IPSCs subject to the
propofol on-site concentration c (red square) and the corresponding fitted function (blue line)
A(c)/A0 = k4 ln(k5 + k6c). Here A0 = A(c = 0). (C) Since the constants k1, . . . , k6 are fitted,
Ar(p) = A(p)/A0 = k4 ln(k7 +k8 exp(p/k1)) (red line) with k7 = k5− (k2k6/k3), and k8 = k6/k3.
An additional fit reveals A(p)/A0 ≈ p0.42 (blue line).

action which depends linearly on the propofol concentration. Future experimental studies may
motivate a more realistic relationship of threshold shift and the anesthetic concentration pa-
rameter. Summarizing, synaptic and extra-synaptic inhibition, and hence anesthetic action, is
present in the cortical populations E and I and in the thalamic population of relay neurons S.

3.3 EEG acquisition and the experimental observations

We re-analysed previously-obtained experimental data from subjects that had been given a short
propofol anesthetic. The details of the methods can be found in [303]. After obtaining regional
ethical committee approval and written informed consent, five healthy subjects (mean age 27.7
yrs, four males) were included in the study. They were on no psychoactive drugs and had
been starved for at least 6 hours prior to the study, and were monitored and managed as per the
Australia and New Zealand College of Anaesthetists best practice guidelines. The induction con-
sisted of an intravenous infusion of propofol at 1500 mg/hr until the subject no longer responded
to verbal command (usually after about 5 minutes). At this point the propofol infusion was
stopped and the subject allowed to recover spontaneously (typically after about 5 minutes). The
estimated effect-site concentrations of propofol were calculated using standard population-based
pharmacokinetic models.

The EEG was acquired using the Electrical Geodesics 128 channel Ag/AgCl electrode system
(Eugene, CO, USA) referenced to Cz. Electrode impedances were below 30 KOhm (100 MOhm
input impedance amplifier). The sampling frequency was 250 Hz, with a 0.1− 100 Hz analogue
band pass filter, and A-D conversion was at 12 bits precision. The EEG data were re-referenced
to a grand mean, and band-pass filtered using 3-rd order Butterworth filters 0.2 − 45 Hz to
eliminate line-noise. An additional Whittaker filter was applied to reduce movement and blink
artifacts. The power in each frequency was obtained applying a short-time Fourier transform
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3.4. Theoretical power spectrum

Fig. 3.2. The temporal synaptic response function of inhibitory GABAA synapses subject to the
factor p. The factor p reflects the anesthetic propofol concentration. (A) The decay phase of the
cortical response function hi(t) is prolonged at larger values of p, whereas the maximum height
of hi(t) with (3.2) is constant. (B) The amplitude of hi(t) in thalamic receptors with (3.3), i.e.
Ar(p) ≈ p0.42, increases as a function of p. Parameters are αi = 400 Hz and βi = 40 Hz.

with a moving window of 60 sec and 54 sec overlap. The power spectra have been computed 1
min before infusion start (t = 1 min) and 5 min after infusion (t = 5 min). For visualization
reasons, these power spectra at different time instances have been smoothed by a running average
over frequencies with a 1 Hz window and a 0.017 Hz frequency step. Note that the experimental
data presented in this chapter was recorded over frontal head regions.

Figure 3.3 illustrates how the EEG power spectrum depends on the concentration of propofol
for a single subject. After starting the infusion at t = 0 min, the estimated propofol effect-site
concentration increases gradually with time (Fig. 3.3A); resulting in increased power in the δ−
and α−frequency ranges (Fig. 3.3B). Over the period of the spectrogram the subject has become
progressively more sedated; until a t = 5 min the subject no longer responds to verbal command
but would still be responsive to nociceptive stimuli. Figure 3.3C shows the power spectra in
the awake and sedation conditions. We observe a power enhancement primarily in the δ− and
α−frequency ranges.

3.4 Theoretical power spectrum

Consider the Robinson model as illustrated in section 2.3.3 of chapter 2. The mean membrane
soma potentials Va for a = E, I, S,R are given by

Va(t) =
∑

b=E,I,R,S

h(t)⊗ νabφb(t− τab), (3.5)

where E, I, S, andR denote the cortical pyramidal and inhibitory populations, relay and reticular
neurons, respectively, and h(t) indicates the mean synaptic response function defined by

h(t) =
αβ

α− β
(
e−βt − e−αt

)
, (3.6)
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A     B C

Fig. 3.3. Electroencephalographic data observed under anesthesia sedation in a single subject
while increasing the propofol concentration. (A) Blood plasma concentration of propofol with
respect to administration time. (B) Spectrogram of frontal EEG power. The vertical lines
denote time windows well before the administration (left line) and at about 5min after the start
of propofol infusion (right side); (C) Power spectra computed before the infusion of propofol
(black) and 5 min after the start of infusion (red).

where α and β are the synaptic rise and decay rates of the synaptic response functions, respec-
tively (in the absence of anesthetics). Considering the propofol effects mentioned earlier i.e.,
the decrease of decay rate of inhibitory synaptic response function by β → β/p, the increase of
charge transfer in cortical inhibitory transmissions I → E and I → I by fC(p), and the increase
of charge transfer in thalamic inhibitory transmission R→ S by fT (p), the system equations are
given by

L̂VE(t) = νeeφE(t) + fC(p)νeiS(VI(t)) + νesS(VS(t− τ)),

L̂VI(t) = νieφE(t) + fC(p)νiiS(VI(t)) + νisS(VS(t− τ)),

L̂VS(t) = νseφE(t− τ) + fT (p)νsrS(VR(t)) + φN ,

L̂VR(t) = νreφE(t− τ) + νrsS(VS(t)),
DφE(t) = S(VE(t)),

(3.7)

where L̂ = (1+
1

α

∂

∂t
)(1+

1

β

∂

∂t
), and D = (1+

1

γ

∂

∂t
)2. In addition, φN = 〈φN 〉+

√
2κξ(t) denotes

the external input to the relay neurons. Here, the transfer functions S(Va) are identical in all
neural populations and obey

S(Va) = Sig(Va, 0)− Sig(Va, ρ), (3.8)

with

Sig(Va, ρ) =
Smaxa

2

(
1 + erf

(
Va − θa − ρσ2

a√
2σa

))
e−ρ(Va−θa)+ρ2σ2

a/2, (3.9)

The effect of propofol on extra-synaptic receptors is modeled by a linear shift in neural firing
thresholds θa (c.f. Eq. (3.4)). Using the approach presented in the previous chapter, the EEG
power spectrum is defined by

PE(ω) = 2κ
√

2π
∣∣∣G̃1,3(ω, p)

∣∣∣2 , (3.10)
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where

G̃(ω, p) =
1√
2π


L̃ D̃
K11
−K1 −fC(p)K2 −K3e

−iωτ 0

−K4 L̃− fC(p)K5 −K6 0

−K7e
−iωτ 0 L̃ −fC(p)K8

−K9e
−iωτ 0 −K10 L̃


−1

. (3.11)

See section 2.3.3 of chapter 2 for definition of G̃ elements.
We point out that the system resting states obtained from setting the time derivatives to zero

in Eq. (3.7) depend on the anesthetic factor p, and the constants Ki for i=1,2,...,10 are evaluated
at the resting state depending on p itself. Therefore, changing the factor p, changes the resting
states, the corresponding nonlinear gains and consequently the system power spectrum.

3.5 Reproducing the experimental observations

In this section, we show that the model under study is able to reproduce the specific changes
observed in frontal EEG data during the propofol-induced sedation. First we reproduce the
results of Hindriks & van Putten [35], which suggest that the stronger synaptic inhibition within
local cortical inhibitory neurons compare to other neuronal populations suffices to reproduce the
experimental observations in frontal EEG oscillations during propofol anesthesia. Subsequently,
we reproduce similar results by considering the propofol effects on extra-synaptic GABAergic
receptors, while there are an identical synaptic inhibition in different neural populations.

3.5.1 The role of synaptic inhibition

Hindriks & van Putten [35] have considered different affinity of propofol for different neuron
types, while it has been assumed that for inhibitory synaptic transmissions within the cortex
and thalamus, propofol only decreases the decay rate of the GABAA receptors and does not
influence their efficacy leading to

L̂VE(t) = νeeφE(t) + fC(p1)νeiS(VI(t)) + νesS(VS(t− τ)),

L̂VI(t) = νieφE(t) + fC(p2)νiiS(VI(t)) + νisS(VS(t− τ)),

L̂VS(t) = νseφE(t− τ) + fC(p3)νsrS(VR(t)) + φN ,

L̂VR(t) = νreφE(t− τ) + νrsS(VS(t)),
DφE(t) = S(VE(t)),

(3.12)

where anesthetic factors p1, p2 and p3 denote the propofol synaptic effect on cortical excitatory
(E), cortical inhibitory (I), and thalamo-cortical relay neurons (S), respectively. It is important
to point out that in the work of Hindriks & van Putten [35], the thalamic and cortical synaptic
inhibition has been modeled by a same function fC(p) with different input factors p1, p2, and
p3. In addition, extra-synaptic inhibition was not modeled in their work.

Figure 3.4 shows the theoretical power spectrum PE given by Eq. (3.10) in the baseline
condition (p = 1) and after the administration of propofol p > 1 for two different relations
of the anesthetic factors p1, p2 and p3. At first we note that the spectra resemble well the
spectrum obtained from experimental observations: increasing p2 in a specific relation to the p1

and p3 yields increases in delta and theta power as well as more pronounced alpha oscillation with
increased peak-frequency [304]. The dynamical analysis of the model [35] reveals three resonances
in the baseline condition, including an oscillatory resonance corresponding to the peak in the
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Fig. 3.4. Theoretical power spectrum of EEG in the baseline condition (p1 = p2 = p3 = 1
encoded in blue lines) and in the anesthesia condition (red lines). (A) In anesthesia condition:
p1 = p3 = 1 + 0.3(p2 − 1), and p2 = 1.125 (B) In anesthesia condition: p1 = p2 = p3 = 1.125.

alpha-band and a pair of zero-frequency resonances. Increasing the anesthetic concentration
diminishes the damping rate of alpha resonances (and thus increases its magnitude) while its
frequency increases. Hence increases in alpha power and its peak-frequency results from the
approach of the system of an oscillatory instability [111]. Moreover, the two zero-frequency
resonances collide and gradually increases in frequency leading to a magnitude increases in delta
and theta power. For more details see [35].

Figure 3.5 illustrates how increasing the anesthetic concentration i.e., increasing the three
factors p1, p2, and p3 changes the stationary states and the corresponding gain function, depen-
dent on the relation of these three factors. We observe that the nonlinear cortical gain denoted by
dS(V )/dV |V=V ∗

E
may increase or decrease with increasing propofol dependent on the synapses

that are modified, as shown in panels B and D, respectively. If the inhibition in cortical in-
hibitory neurons is stronger than other populations i.e., p2 > p1 and p2 > p3, then the nonlinear
gain increases (Fig. 3.5B) reflecting an increased excitability and the power values increase as
well (c.f. Fig. 3.4, red curve in panel A). In contrast, if the response of all three synapse types re-
spond identically (as assumed in previous studies), then the nonlinear gain decreases (Fig. 3.5D)
and the decreased excitability diminishes the power spectrum values (c.f. Fig. 3.4, red curve in
panel B).

Moreover, the stationary states behave differently in the two cases, cf. Fig. 3.5C and D.
Increasing (decreasing) the nonlinear gain is accompanied by an increasing (decreasing) value of
the corresponding stationary state. It is also remarkable that in panel C the two lower stationary
states collide to a single state whereas in panel D the two upper states collide. This difference in-
dicates two fundamentally different mechanisms which may yield the different dynamics observed
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Fig. 3.5. The stationary states and the nonlinear gain dS/dV computed at the lowest stationary
state of pyramidal neurons V ∗E subjected to the factor p2. In panels (A) and (B) p1=p3=
1+0.3(p2-1), whereas in panels (C) and (D) p1=p2= p3. We observe three states in (A) and (C)
for p = 1, where in panel (A) the two lower states collide and in panel (C) the two upper states
collide. The center branches (dashed red lines) are linearly unstable, whereas the other branches
are linearly stable. For illustration reasons, the lower branches are shown again in the insets.

in the power spectrum [259].

3.5.2 The role of extra-synaptic inhibition

In the following, to understand how propofol effects on ESRs might enhance δ− and α−power,
we examine the impact of adding tonic inhibition via extra-synaptic GABAA receptors [36]. This
part of the work examines the effect of tonic inhibition (Eq. (3.4)) in various populations E, I, S
on the power spectrum of neural activity in cortical excitatory neurons, i.e., population E.

Figure 3.6A shows the interaction between propofol and tonic inhibition in the cortical in-
hibitory neuronal population. If we set the tonic inhibition to zero (kI = 0mV), we observe a
decrease in spectral power as propofol concentrations increase (i.e., the power moves from the
black line to the blue line in the figure). If we set the tonic inhibition to (p − 1) · 15 mV, we
see the opposite effect - there is an increase of δ− and α−power (black line to red line), with
increasing propofol concentration.

Previous studies have indicated that extra-synaptic inhibition in thalamic relay neurons may
control the level of inhibition in the brain [267]. However, Fig. 3.6B reveals that adding a
non-zero tonic inhibition in the thalamic relay neurons causes a decrease in the spectral power,
similar to the previous case of absent tonic inhibition in the inhibitory cortical neurons.

It is well-known that GABAergic anesthetics change the EEG from high frequency-low ampli-
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tude signals to low frequency-high amplitude signals [84, 87]. Figure 3.6C and D show simulated
time series in the absence and presence of tonic inhibition in cortical inhibitory cells reproducing
this experimental finding.

Our results elucidates that tonic inhibition in cortical interneurons and thalamic relay neurons
affect the cortical power spectrum differently. This finding is similar to results of a previous com-
putational neural population study of a cortico-thalamic feedback single-neuron model [302]. Fig-
ure 3.7 shows how the resting membrane potential (Fig. 3.7A) and the nonlinear gain (Fig. 3.7B)
in the cortical excitatory population change with differing extra-synaptic anesthetic sensitivity
in cortical inhibitory neurons (kI) and in the thalamic relay neurons (kS). We observe that both
the resting potential and the nonlinear gain of cortical excitatory neurons increase when the
cortical inhibitory extra-synaptic anesthetic sensitivity kI increases, whereas resting potential
and nonlinear gain of cortical excitatory neurons decrease when the extra-synaptic anesthetic
sensitivity in thalamic relay neuron kS increases. Since the nonlinear gain is proportional to the
systems responsiveness to external stimuli, the power enhancement in population I may be ex-
plained by the augmented responsiveness of the cortical excitatory neurons. This responsiveness
depends on the sub-circuit in which the neurons are involved. Since relay neurons are part of the
thalamo-cortical feedback loop, while cortical inhibitory neurons contribute to the cortical loop,
the cell types respond differently to the thalamic input. Essentially assuming tonic inhibition
in the population of cortical excitatory neurons E, the study reveals a similar propofol concen-
tration dependence of the power spectrum, the resting state potential and the nonlinear gain as
for the thalamic tonic inhibition S. This shows the unique tonic inhibition effect in the cortical
inhibitory neurons.

3.6 Induction of delta activity in EEG rhythms

In this section we aim to investigate how the spectral power peak in δ− frequency range changes
with the level of tonic inhibition. The spectral power peaks exhibit a maximum of power,
expressed mathematically as a local maximum of the function PE(f) where PE denotes the EEG
power spectrum (c.f. Eq. (3.10)). The local maximum at frequency f0 is defined as dPE/df =
0, d2PE/df

2 < 0 computed at f0. If there is a local maximum of power in the δ− frequency range,
then δ−activity is present, whereas a missing local maximum in the δ−frequency range indicates
missing δ−activity. Since the magnitude and frequency of power peaks change with the propofol
concentration and extra-synaptic threshold, the concentration factor p and the extra-synaptic
anesthetic sensitivity ka are the parameters of the power spectrum, i.e. PE = PE(p, ka, f) .

To illustrate the usefulness of this parametrization, let us assume a factor ka0 for which no
δ−power peak exists in the power spectrum PE(p, ka0, f), and ka1, ka1 > ka0 is the extra-synaptic
anesthetic sensitivity leading to a spectral δ−power peak in PE(p, ka1, f), with dPE(p, ka1, fmax)
/dfmax = 0, where fmax is a frequency in the δ−frequency range. Mathematically, then the con-
tinuity of all model functions and variables guarantee that there is a threshold for the emergence
of δ−activity at a certain extra-synaptic anesthetic sensitivity ka,thr with ka0 ≤ ka,thr ≤ ka1.
Consequently, if a threshold extra-synaptic anesthetic sensitivity for δ−activity exists, then the
variation of model variables about this critical point guarantees the emergence of δ−activity.
This mathematical reasoning allows us to investigate conditions under which δ−activity may
emerge.

Figure 3.6 shows the power spectrum for single values of the extra-synaptic sensitivity kI ,
for single values of the concentration factor p and fixed strength of self cortical inhibition νii,
while Fig. 3.7 gives more details on the role of extra-synaptic sensitivity for fixed values of
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Fig. 3.6. The theoretical EEG power spectrum in the baseline and in the sedation condition
with and without tonic inhibition in the cortical inhibitory neurons I in (A) and the thalamic
relay neurons S in (B) and corresponding simulated EEG time-series. In (A) the administration
of propofol without tonic inhibition (blue line) attenuates the power spectrum compared to the
baseline condition (black line) while the tonic inhibition (red line) increases the global power
and generates oscillatory activity in the δ−frequency range. In (B) increasing the anesthetic
concentration yields a global power decrease in the sedation condition without tonic inhibition
(blue line) and a further power decrease in the presence of tonic inhibition (red line). In (A)
and (B), the black lines indicate the EEG-spectral power in the baseline condition (p = 1),
and the blue and red lines show the power spectrum in anesthesia condition (p = 1.125) in the
absence (ka = 0) and in the presence (ka = 15 mV) of tonic inhibition, respectively. (C) The
simulated EEG time-series in the absence of extra-synaptic effects, i.e. kE = kI = kS = 0 mV.
(D) The EEG time-series in the presence of extra-synaptic action in cortical inhibitory neurons
with kI = 15 mV, kE = kS = 0 mV. The tonic inhibition changes the EEGs from low-amplitude,
high-frequency pattern to high-amplitude, low-frequency pattern. In addition, the strength of
self cortical inhibition is νii = −1.8 mVs.
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(p = 1.125). In addition, the strength of self cortical inhibition is νii = −1.8 mVs.

the concentration factor p and fixed cortical self-inhibition. To understand better the interplay
between tonic inhibition, synaptic inhibition and the strength of cortical self-inhibition, Fig. 3.8
shows the parameter pairs of synaptic inhibition p and the threshold of extra-synaptic sensitivity
kI,thr at different self-inhibition levels, for which a peak in the δ−frequency range emerges. Recall
that the kI,thr is the critical (smallest) value of extra-synaptic sensitivity in cortical inhibitory
neurons kI , that lead to dPE/df = 0, d2PE/df

2 < 0 computed at fmax ∈ δ−range. Parameter
values beyond the respective curves lead to δ−activity power peaks.

We observe that for a chosen value of self cortical inhibition, by increasing the level of
inhibition, the smaller value of kI,thr and thereby smaller tonic inhibition i.e., (p − 1) · kI,thr is
required to induce the δ−activity power peak, while the weaker the self cortical inhibition is the
larger is the necessary extra-synaptic sensitivity or the synaptic inhibition to generate δ−activity.

Even for vanishing self cortical inhibition (νii = 0), mathematical analysis (not shown) reveals
that there is still a δ−peak in the power spectrum for large enough synaptic or tonic inhibition
(for p or kI large enough). Moreover, Fig. 3.8 reveals a minimum tonic inhibition level (minimum
value of kI) beneath which no δ−power peak emerges, irrespective of the level of synaptic inhi-
bition (p). This result indicates a major role of tonic inhibition in the generation of δ−activity,
since it may support δ−activity even if the synaptic inhibition level is not sufficient to support
it.
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Fig. 3.8. Parameter space for δ−power peak. The lines give the smallest (threshold) value of
the extra-synaptic sensitivity kI,thr that induces δ− oscillations in the sedation condition with
respect to the concentration factor p for different values of self-inhibitory connections νii. The
weaker the self cortical inhibition (the smaller |νii|), the higher the necessary level of propofol
concentration (larger p) and the tonic inhibition (larger (p− 1) · kI) to induce δ−activity.

3.7 Discussion

In the sedation phase, for modest concentrations of propofol, the EEG power spectrum exhibits
an increase in the δ− and α−frequency ranges (Fig. 3.3) as found experimentally in the induction
phase of propofol anesthesia [4]. One possible explanation for these phenomena is by postulating
stronger GABAergic potentiation within cortical inhibitory neurons than within cortical pyra-
midal neurons (c.f. Fig. 3.4).

We hypothesize, that cortical GABAergic self inhibition plays a decisive role. Figure 3.6
reveals that the power surge in these frequency ranges might also result from extra-synaptic tonic
inhibition active in cortical inhibitory neurons. Tonic inhibition increases the firing threshold
and hence diminishes the output of inhibitory neurons to excitatory cortical neurons, which
then allows increased excitation in the excitatory population and a power surge in the EEG.
Conversely tonic inhibition in the thalamic relay cells does not induce power surge in EEG since
augmented inhibition in the thalamic relay cells yields diminished excitation in cortical excitatory
neurons, leading to a decrease in EEG power. This interpretation is corroborated by Fig. 3.7
which demonstrates augmented and diminished nonlinear gain in cortical excitatory neurons
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Chapter 3. Modeling the anesthetic action on synaptic and extra-synaptic receptors

assuming tonic inhibition in inhibitory and thalamic relay population, respectively. This reflects
enhanced and weakened response to the noisy thalamic external input, see Refs. [35, 111] for a
similar line of argument.

Figure 3.6 clearly reveals the emergence of δ−activity caused by extra-synaptic tonic inhibi-
tion which is affirmed by the existence of a minimum level of extra-synaptic inhibition shown in
Fig. 3.8. Conversely, α−activity appears to be much less sensitive to tonic inhibition since it is
present for all tonic inhibition levels. One interpretation may be the generation of α−activity by
the cortico-thalamic feedback as hypothesized theoretically [33] while δ−activity results from the
cortical interaction of excitatory and inhibitory neurons. The exact origins of propofol-induced
α− and δ−activity are not known for certain. We find that the α− oscillations arise from
thalamo-cortical resonances. These oscillations are commonly synchronous across widespread
cortical regions and are not easily generated in isolated cortical tissue [305, 306]. This affirms
the original model of Lopes da Silva et al. [180]. However, our model results are equivalent to
results of other models describing α−activity by purely cortical interactions. We are not aware
of a methodology ruling out one or the other model and this is not the aim of the present work.
Our work just reveals the additional possibility that the thalamus serves as a possible (indirect)
source of α−activity. Similarly, the origin of δ−activity is not clear, but slow activity does in-
crease at higher concentrations of propofol - which may be associated with decreasing α−waves
as observed during desflurane general anesthesia [307]. This is in keeping with δ−waves becoming
more pronounced as the cortico-thalamic systems becomes increasingly hyperpolarized. However
there is a lot of variability between patients as regards the relative power of α− and δ−activity
during general anesthesia; which would suggest that the true explanation is more complex, and
requires recognition of other factors such as the one presented in this paper - the influence of the
propofol on extra-synaptic inhibition.

Although anesthetic action on synaptic and extra-synaptic GABAergic receptors is different,
both actions diminish neural activity and hence increase inhibition. Figure 3.8 elucidates that
strong enough extra-synaptic or synaptic inhibition induces δ−activity. Hence, one may argue
that the level of inhibition plays an important role while its origin, i.e. synaptic or extra-
synaptic, plays a secondary role. This interpretation corroborates the idea of the balance of
excitation and inhibition as the major mechanism in general anesthesia. This interpretation is
in good accordance to previous experimental findings on the important role of the balance of
excitation and inhibition in brain network under anesthesia [308, 309]. Such global concepts as
excitation-inhibition balance are attractive to describe complex processes in general anesthesia.
For instance, anesthetics alter arousal in several pathways, such as the cholinergic pathway [17]
and the orexinergic pathway which has been identified to activate a complex functional network
controlling, inter alia, the emergence from unconsciousness [310].

Our theoretical study considers the anesthetic propofol and its corresponding action at synap-
tic and extra-synaptic GABAergic receptors only, whereas it is known that propofol induces in-
hibition at various other receptors as well [13, 311], including minor effects on NMDA-receptors
and voltage-gated potassium channels [13]. Propofol also potentiates glycine receptors which are
are found all over the central nervous system and have a major role in regulating inhibition, e.g.,
in the brain stem [312].

Similar to extra-synaptic inhibition resulting from ambient GABA concentrations, the pres-
ence of ambient concentrations of glycine close to NMDA-receptors entails tonic depolarization.
This tonic excitation diminishes the firing threshold of neurons and hence may counteract in-
hibition. The present work considers tonic inhibition only and neglects tonic excitation effect.
Although it would be important to study tonic excitation effects, this additional study would
exceed the major aim of the manuscript, namely demonstrating the fundamental effect of tonic
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anesthetic action.
In addition, by virtue of the focus on extra-synaptic action, the model proposed neglects

known anesthetic effects on different receptors and ion channels, although they have been shown
experimentally, e.g., [13, 313] and references therein, and theoretically [211] to affect EEG activ-
ity. Specifically, the latter work of Bojak et al. [211] considers anesthetic effects on hyperpolarization-
activated cyclic nucleotide-gated potassium channel 1 (HCN1) subunits which, effectively, in-
crease the mean firing threshold in neural populations and strongly resembles the tonic inhibition
induced by extra-synaptic GABA-receptors.

The model network topology includes a single module of a closed thalamo-cortical feedback
loop [314] comprising two thalamic nuclei and cortical excitatory and inhibitory neurons. This
model represents a first approximation of brain networks since it neglects brain stem activity
including the reticular activating system (RAS) [315], which has significant modulating effects
on attention, arousal and consciousness. Future work will include structures of the brain stem,
propofol action on glycine receptors, and will take into account the RAS - since its neural
structures involved exhibit strong extra-synaptic inhibition [316, 317, 9]. The model also neglects
the cholinergic pathway originating from the basal forebrain [318], which is known to co-regulate
the level of consciousness [17].

Essentially, our theoretical model assumes population coding implying rate-coding response
activity of neuron populations subjected to external thalamic noise. The model does not consider
specific single neuron dynamics found experimentally under anesthetic conditions. For instance,
it has been hypothesized that, at certain levels of anesthetic concentration, thalamic neurons
switch their activity from tonic firing to bursting and induce loss of consciousness [44].

In spite of these limitations, our model reproduces qualitatively the action of propofol on
EEG and reveals the possible impact of extra-synaptic GABAergic receptors on the EEG power.
To our knowledge, the present work is the first to link extra-synaptic GABAergic action and
experimental EEG. Future work will refine the model involving additional receptor action, e.g.,
tonic excitation caused by ambient glycine concentrations, and sub-cortical brain structures.

3.8 Conclusion

Our results demonstrate that the cortical GABAergic self inhibition plays a critical role in repro-
ducing the characteristic features of frontal EEG rhythms observed experimentally during the
propofol sedation. Tonic inhibition activated in cortical inhibitory neurons results in a power
surge in the EEG. Conversely, the potentiation of extra-synaptic GABAergic inhibition in corti-
cal excitatory neurons or thalamic relay cells diminishes the EEG power. Moreover, α−activity
appears to be less much sensitive to the tonic inhibition whereas the strong enough extra-synaptic
or synaptic inhibition induces EEG δ−activity as observed during propofol general anesthesia.
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Abstract

Increasing concentrations of the anesthetic agent propofol initially induces sedation before achiev-
ing full general anesthesia. As mentioned before, during this state of anesthesia, the observed
specific changes in EEG rhythms comprise increased activity in the δ− (0.5 − 4 Hz) and α−
(8− 13 Hz) frequency bands over the frontal region, but increased δ− and decreased α−activity
over the occipital region. In this chapter we apply a thalamo-cortical neuronal population model
to reproduce these certain changes in EEG spectral power during propofol-induced anesthesia
sedation.

54



4.1. GABAergic inhibition in thalamic cells

We show that the model reproduces the power spectrum features observed experimentally
both in frontal and occipital electrodes. Moreover, a detailed analysis of the model indicates the
importance of multiple resting states in brain activity. It is demonstrated that the α−activity
originates from the cortico-thalamic relay interaction, whereas the emergence of δ−activity re-
sults from the full cortico-reticular-relay-cortical feedback loop with a prominent enforced tha-
lamic reticular-relay interaction. The results of the present chapter suggest an important role
for synaptic GABAergic receptors at relay neurons and, more generally, for the thalamus in the
generation of both the δ− and the α− EEG patterns that are seen during propofol anesthesia
sedation.

4.1 GABAergic inhibition in thalamic cells

In order to implement the anesthetic action in cortical and thalamic structures, a careful look
at neural receptors and their response to anesthetic action is mandatory. Recent studies have
revealed possible molecular sites and neuronal pathways for the action of the anesthetic propofol
in the human brain. In vivo extracellular recordings have demonstrated that propofol suppresses
field potentials in the rat thalamus and cortex [80]. Although some reports put emphasis on
more prominent effects in the cortex, the cortical suppression may, in fact, be secondary to anes-
thetic action on projection neurons located elsewhere in the brain, especially in the thalamus.
Also several lines of evidence indicate that thalamus and thalamic neuronal circuits might be
important target-sites for the hypnotic effects of propofol [9, 42, 43]. Moreover, experimental
observations strongly suggest that reticular thalamic neurons are a major source of inhibition
to the relay neurons; and are thus a critical structure for the effect of propofol in thalamic
circuits [319, 79]. These findings motivated us to more concentrate on the effect of propofol in
thalamic neurons - in contrast to previous chapter. Based on these experimental observations, we
first study a full model including anesthetic effects in cortical and thalamic populations at light
sedation. Then, in order to form a hypothesis that the GABAergic inhibition in thalamic cells
seems to play a crucial role in the generation of characteristic EEG patterns under propofol se-
dation, we neglect the anesthetic action in the cortex in a reduced model [37]. This assumption
points out the importance of the thalamus for major neural effects under anesthesia sedation
as well as simplifies the model under study, while later results shall reveal that the model is
still adequate to reproduce the observed changes in EEG rhythms. The model aims to reproduce
spectral features in light sedation, i.e. at low propofol concentrations. This anesthetic phase does
not exhibit increased spectral power in the β−frequency band, that is sometimes called beta buzz.

In the present chapter, we provide evidence that thalamic GABAergic synaptic inhibition is
one of the key actions inducing the characteristic changes in the δ− and α−frequency ranges
under propofol-induced sedation. Moreover, the detailed study of sub-circuits suggests the exis-
tence of two major cortico-thalamic sub-circuits that generate δ− and α−spectral power peaks.
To our best knowledge, this is the first neural population study that reproduces the EEG changes
over frontal and occipital regions in the thalamo-cortical system.

In this chapter we use a neural population model based on the model of Hutt & Longtin [28],
c.f. section 2.3.4 of chapter 2. The following section presents the model equations which takes
into account anesthetic action at inhibitory GABAergic synaptic receptors in both cortical in-
hibitory neurons and thalamic relay cells. The anesthetic action of extra-synaptic GABAergic
receptors are however neglected in the present chapter. Then, we demonstrate the simulation of
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Chapter 4. Modeling of EEG power spectrum over frontal and occipital regions during propofol sedation

power spectra of EEG in frontal and occipital electrodes and show that both the proposed full
and reduced neural population model reproduce very well the characteristic spectral features in
the δ− and α−band subjected to the propofol concentration. The subsequent analysis of the
model reveals the importance of multiple resting states and the presence of effective sub-circuits
generating the spectral features in δ− and α−frequency bands.

4.2 Theoretical power spectrum

Under the assumption of the spatial homogeneity, the mean potentials V c
a , for a ∈ {E, I,R, S}

in the cortical pyramidal neurons (E), cortical inhibitory neurons (I), the thalamo-cortical relay
neurons (S) and thalamic reticular neurons (R) shown in Fig. 2.8 obey

L̂eV
e
E(t) = KEESC [V e

E(t)− V i
E(t)] +

KESST [V e
S (t− τ)− V i

S(t− τ)],

L̂iV
i
E(t) = fC(p)KEISC [V e

I (t)− V i
I (t)],

L̂eV
e
I (t) = KIESC [V e

E(t)− V i
E(t)],

L̂iV
i
I (t) = KIISC [V e

I (t)− V i
I (t)], (4.1)
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e
S (t) = KSESC [V e
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E(t− τ)] + I(t),
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i
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R(t)],

L̂eV
e
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S(t)],

evoked at excitatory (c = e) and inhibitory (c = i) synapses with
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∂t
+ 1,

(4.2)

where 1/αe and 1/αi are the characteristic rise times of the response function for excitatory and
inhibitory synapses, respectively, and 1/βe and 1/βi are the corresponding characteristic decay
times. Note that the propofol prolongs the decay phases only in inhibitory synapses, and thus
βi → βi/p, while other synaptic rates are unaffected by propofol. See section 3.2 for definition
of functions fC(p), and fT (p). The external input to relay neurons is I(t) = I0 + ξ(t), where
ξ(t) is Gaussian uncorrelated noise. In addition, the parameter τ denotes the transmission time
delay between cortex and thalamus. Here it is assumed that the mean firing rate function given
by Eq. (2.36), in the cortex SC [·] is different to the thalamic firing rate function ST [·], while it
is identical in the cortex and for relay and the reticular populations. The nominal values for two
parameter sets are displayed in Table 4.1 in the absence of anesthetics.

It can be seen that the mean post-synaptic potentials in above equations do not depend on
spatial locations and then obey the general delay differential equation system

L̂(∂/∂t, p)X(t) = f(X(t),X(t− τ), p) + I(t), (4.3)

in which X(t) = (V e
E , V

i
E , V

e
I , V

i
I , V

e
S , V

i
S , V

e
R)> ∈ RN is the activity variable vector with dimen-

sion N=7. The high index > denotes the transposed vector or matrix. The nonlinear vector
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Table 4.1. Model parameters, their symbols, and nominal values for two parameter sets.

Parameter Symbol Nominal value
(set I, set II)

Maximum firing-rate of cortical population SmaxC (130, 140) Hz
Maximum firing-rate of thalamic population SmaxT (100, 220) Hz
Mean firing threshold of cortical population V thC (25, 10) mV
Mean firing threshold of thalamic population V thT (25, 10) mV
Firing rate variance σ (10,12) mV
Type-I population effect constant ρ (0.05, 0.09) mV−1

Excitatory synaptic rise rate αe (500,500) s−1

Excitatory synaptic decay rate βe (50,50) s−1

Inhibitory synaptic rise rate αi (100,400) s−1

Inhibitory synaptic decay rate βi (10,40) s−1

Excitatory synaptic gain ae 1 mVs
Inhibitory synaptic gain ai 1 mVs
Synaptic strength from E to E neurons KEE (0.1, 0.1) mVs
Synaptic strength from E to I neurons KIE (0.3, 0.2) mVs
Synaptic strength from E to S neurons KSE (0.8, 0.2) mVs
Synaptic strength from E to R neurons KRE (0.2, 0.5) mVs
Synaptic strength from I to I neurons KII (0.2, 0.1) mVs
Synaptic strength from I to E neurons KEI (0.6, 0.2) mVs
Synaptic strength from S to E neurons KES (0.8, 2.2) mVs
Synaptic strength from S to R neurons KRS (0.1, 0.3) mVs
Synaptic strength from R to S neurons KSR (0.8, 0.1) mVs
Constant external input I0 0.1 mV
Intensity of external thalamic noise κ 0.5 mV
Transmission delay between cortex and thalamus τ 40 ms

function f ∈ RN includes the nonlinear transfer functions and depend on the anesthetic fac-
tor p. The external input is written as I(t) = I0 + ξ(t) ∈ RN with I0 = (0, 0, 0, 0, I0, 0, 0)>

and ξ(t) = (0, 0, 0, 0, ξ(t), 0, 0)>. The diagonal matrix operator L̂(∂/∂t, p) ∈ RN×N includes all
temporal operators L̂e,i and depends on the anesthetic factor p.

Assuming small random fluctuations ξ(t), we define the resting state X0 ∈ RN as a fixed
point of Eq. (4.3), for which L̂ = 1, and which is given by

X0 = f(X0,X0, p) + I0. (4.4)

We observe that the resting state depends on p and hence on the anesthetic concentration. The
current model follows the standard assumption [22, 29, 23, 182, 320] that the electric dipol
generating the EEG is modeled well by fluctuations of the dendritic currents about the resting
state. Hence small deviations Y (t) ∈ RN from the resting state X0 generate the EEG and obey

L̂(∂/∂t, p)Y (t) = A(p)Y (t) +B(p)Y (t− τ) + ξ(t), (4.5)

where A(p), B(p) ∈ RN×N are constant matrices. Following previous studies [22, 29, 23, 33,
173, 182], the EEG is generated by the population activity of pyramidal cortical cells V e

E . Then,
by virtue of the specific choice of external input to relay neurons, the power spectrum of the
EEG at certain frequency ν reads [111]

PE(ν) = 2κ
√

2π
∣∣∣G̃1,5(ν, p)

∣∣∣2 , (4.6)
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where PE just depends on one matrix component of G̃(ν, p) given by

G̃(ν, p) =
1√
2π
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0 0 0 0 0 L̂i(ν, p) −fT (p)K7

−K8e−2πiντ K8e−2πiντ 0 0 −K9 K9 L̂e(ν)



−1

(4.7)

See section 2.3.4 of chapter 2 for the definition of G̃(ν, p) elements. The matrix elements of
G̃1,5(ν, p) depend primarily on the level of excitation and inhibition in the various populations
and on the nonlinear gains dST,C [V ]/dV computed at the resting state of the system. Since the
resting state depends strongly on the anesthetic concentration factor p, in turn the nonlinear
gains computed at the resting state depends on p as well.

4.3 Experimental power spectrum

An example of the time course of the progressive increase in propofol effect-site concentrations,
and the changes in δ− and α−power in each of the 11 para-midline electrodes are shown in
Fig. 4.1A and B , respectively. Figure 4.1C shows the spectrogram of experimental EEG power
averaged over frontal and occipital electrodes. The power spectra of frontal and occipital average
EEG during the baseline phase and during sedation are shown in Fig. 4.1D. They show typical
changes in EEG patterns; namely that the propofol resulted in a loss of the α−rhythm (∼ 10
Hz) in the occipital electrodes, but a gain in α− and β−power (peak frequency around 13 Hz)
in the frontal leads (p < 0.05, t-test). There is a clear line of spatial delineation between the two
modes of EEG response; most of the central and parietal electrodes are similar to the occipital
pattern of response. Propofol also causes an increase in δ−power in both frontal and occipital
regions (p < 0.05, t-test). Figure 4.1E summarizes these results.

Figure 4.1D and E consider propofol concentrations which lead to sedation. In some patients,
there is an increased activity in the frontal β−band which is seen at about 6 min in Fig. 4.1C.
The alternations in higher frequencies are not specifically investigated in our model.

4.4 Power spectrum of full thalamo-cortical model

This section presents the results of the analytical study of the full model govern by equations
presented in section 4.2.

Frontal spectrum

Figure 4.2 shows the EEG power spectrum (4.6) in the baseline condition (absence of propofol)
and after the administration of propofol for certain parameters (parameter set I in Table 4.1).
We observe an increase of power in the δ− and α−frequency bands while increasing the propofol
concentration accompanied by α−activity shifted to higher frequencies (cf. Fig. 4.2A). These
amplitude power changes bear a strong resemblance to the empirical observations in EEG power
spectrum over the frontal region (cf. Fig. 4.2B). These results are confirmed by numerical
simulations of the model.

To reveal the origin of the spectral EEG-changes with increasing concentration, we relate the
maxima of spectral power to the roots of the characteristic equation of Eq. (4.5) λ = γ + 2πiν.
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Fig. 4.1. Physiological and electroencephalographic data observed in a single subject while
increasing the propofol concentration. (A) Blood plasma concentration of propofol with respect
to administration time. Since average clinical propofol concentrations in sedation are around or
smaller than 1µg/ml [321], the subject my leave the clinical sedation phase at about t = 5min.
(B) Mean spectral power in the δ− and α−frequency bands in single electrodes located along
the scalp mid-line with respect to administration time. (C) Spectrogram of power averaged
over four frontal (left) and four occipital (right) electrodes. The vertical white lines denote 2
sec-time windows at t = 2 min 6 sec and at t = 5 min. (D) Average power spectra over frontal
(left) and occipital (right) electrodes during the baseline state (awake) and during sedation. The
peak at about 2 Hz has been verified by modifying the sliding window duration of the power
spectral density estimation technique. (E) Spectral power amplitude averaged over the δ− and
α−frequency bands in the frontal and occipital scalp. Grey and black color encodes awake and
sedation, respectively.
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Fig. 4.2. The theoretical and experimental EEG-spectral power in the baseline and the sedation
conditions. (A) The solid lines indicate the analytical solutions and the dashed lines show the
numerical solutions of the model system for the control condition (p = 1) and under sedation
(p = 1.165). (B) The normalized power amplitude of experimental data in frontal electrodes
and the model over δ− and α−band in the baseline condition (blue bars) and in the sedation
condition (red bars). Parameters are taken from set I in Table 4.1, the spectrum is computed at
the upper resting state of the system.

Figure 4.3 illustrates the damping rate γ and frequency ν of the roots in the δ− and α−frequency
ranges. While the power peak in α−frequency range increases by the administration of propofol,
the δ−frequency is maintained for different propofol concentrations. Moreover, the damping
rate of δ− and α−activity increase with increasing anesthetic level and hence the power in the
corresponding frequency band increases in accordance to standard spectral theory.

Occipital spectrum

For different parameters (set II in Table 4.1), Fig. 4.4 shows the model power spectrum resem-
bling experimental activity observed in occipital EEG-electrodes. The power in the δ− frequency
range increases and the α−power decreases while increasing the anesthetic level (cf. Fig. 4.4B).
Figure 4.5 presents the effect of increasing propofol concentration on damping rate and frequency
of the model EEG in the δ− and α−frequency ranges. It can be observed that as propofol concen-
tration increases, the damping rate of δ−activity increases whereas α−damping rate decreases.
This finding is consistent with enhanced δ− and attenuated α−power observed experimentally.
In addition, the frequency of the activity in both frequency bands increase very slightly.
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Fig. 4.3. Modulation of δ− and α−activity in model over the frontal region. The panels show
the frequency ν in the roots imaginary part which lie in the δ−and α−frequency ranges in panels
(A) and (C), respectively. Panels (B) and (D) show the corresponding damping rates as a
function of the anesthetic factor p. The factor p reflects the anesthetic propofol concentration.

Resting state and gain function

In the case of constant external input I(t) = I0, the spatially-homogeneous resting states of
Eqs. (4.1) can be obtained by dV e,i

a /dt = 0, for a ∈ {E, I, S,R} leading to

V ∗eE = KEESC [V ∗eE − V ∗iE ] +KESST [V ∗eS − V ∗iS ],
V ∗iE = fC(p)KEISC [V ∗eI − V ∗iI ],
V ∗eI = KIESC [V ∗eE − V ∗iE ],
V ∗iI = KIISC [V ∗eI − V ∗iI ],
V ∗eS = KSESC [V ∗eE − V ∗iE ] + I0,
V ∗iS = fT (p)KSRST [V ∗eR ],
V ∗eR = KRESC [V ∗eE − V ∗iE ] +KRSST [V ∗eS − V ∗iS ].

(4.8)

Figure 4.6 presents the mean potential of pyramidal neurons in the resting state denoted
by V ∗eE , and the corresponding nonlinear gain dependent on the propofol concentration for the
two parameter sets considered in the previous section. We observe that three resting states may
occur in the baseline condition, cf. Fig. 4.6A and B. Moreover, the upper and the center resting
states collide at a critical value of p. Above this critical level, there exists a single resting state
only at a low mean potential. The stability study of the resting states reveal that the upper and
lower resting states are linearly stable, whereas the center resting state is unstable. This shows
that the system may evolve either about the upper or the lower state, but never about the center
resting state.

Since the spectral power depends heavily on the resting state and the nonlinear gain, the
distinction between the upper and lower resting states is important to understand the power
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Fig. 4.4. The theoretical EEG-spectral power compared to the power observed experimentally
in occipital EEG-electrodes in baseline and under sedation. (A) The solid and dashed lines
indicate the analytical and numerical solutions, respectively, in the baseline (p = 1) and in the
anesthesia sedation condition (p = 1.06). (B) The blue and red bars show the normalized power
amplitude of experimental data in occipital electrodes and the model over δ− and α−band in
the baseline and anesthesia condition, respectively. Parameters are taken from set II in Table
4.1, the spectrum is computed at the lower resting state of the system.

changes shown in the previous section and in experiments. Increasing the anesthetic concentra-
tion decreases the mean potential of the upper resting state and, since the upper mean potential
values are larger than the mean firing threshold and by virtue of the sigmoidal shape of the
transfer function, decreasing V ∗eE on the upper resting state leads to an increase of the corre-
sponding nonlinear gain function (Fig. 4.6C and D). Conversely increasing the anesthetic level
on the lower resting state decreases the nonlinear gain.

Sub-circuits

The EEG results from the interactions of various neural populations which may be viewed as
interacting sub-circuits [29, 23, 227]. According to the full model shown in Fig. 2.8 , we identity
the sub-circuits E → S → E (cortico-thalamic relay circuit), E → I → E (intra-cortical circuit),
S → R→ S (intra-thalamic circuit) and E → R→ S → E (cortico-thalamic circuit). To reveal
the relative contribution of these sub-circuits to the spectral power in the excitatory cortical
population in certain frequency bands, we define the relative frequency response function from
neurons of type b to neurons of type a

ψl(ν, p) =
|ηl(ν, p)|−|ηl(ν, p = 1)|

|ηl(ν, p = 1)| , (4.9)
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Fig. 4.5. Modulation of δ− and α−activity in the model over occipital region. Shown are the
frequency of δ−and α−oscillation in panels (A) and (C), respectively, and the corresponding
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the anesthetic propofol concentration.

where l ∈ {ese, eie, srs, esre}, ηese = χeesχ
e
se, ηeie = χieiχ

e
ie, ηsrs = χisrχ

e
rs, and ηesre = χeesχ

i
srχ

e
re,

and

χe,iab (ν, p) = KabS
′
C,T (V ∗e,ib )φe,i(ν, p)e−2πiντ for (a, b) ∈ {(e, s), (s, e), (r, e)},

χe,iab (ν, p) = KabS
′
C,T (V ∗e,ib )φe,i(ν, p) otherwise.

The relative frequency response function ψl defined in Eq. (4.9) is motivated by a similar measure
defined by Hindriks & van Putten [35], but extends this previous definition by its frequency
dependence. Here S′C,T (V ∗e,ib ) are the nonlinear gains, i.e. the derivative of the mean firing rate
function with respect to the voltages V e,i

b computed at the resting states V ∗e,ib . The term e−2πiντ

denotes the phase shift due to the propagation delay between cortex and thalamus. Since it does
not reflect any changes in our results, it can be neglected in the analysis. The functions φe,i are
the Fourier transform of he,i(t) and represent the synaptic frequency responses

φe(ν, p) =

(
1 +

2πiν

αe

)−1(
1 +

2πiν

βe

)−1

,

φi(ν, p) = fj(p)

(
1 +

2πiν

αi

)−1(
1 +

2πiν

βi

)−1

.

(4.10)

Increasing the factor p decreases the decay rate of synaptic inhibition βi and increases the
charge transfer fj(p). Hence the enhancement of inhibition leads to increased inhibitory synaptic
frequency response function φiab given by Eq. (4.10). Moreover, the administration of propofol
changes the resting states and consequently the nonlinear gain functions S′C,T (V ∗e,ib ) which may
increase or decrease.
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Fig. 4.6. The resting states of the system determined by Eq. (4.8) subject to the anesthetic
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propofol concentration.

Figure 4.7 illustrates the contribution of different anatomical loops l ∈ {ese, eie,
srs, esre} to the power spectrum at the upper and lower resting states of the system correspond-
ing to the frontal and occipital regions, respectively.

In the upper resting state, increasing the propofol concentration increases the inhibitory
synaptic frequency response function φiab (cf. Eq. (4.10)) as well as the nonlinear gain functions
S′C,T (V ∗e,ib ) (cf. Fig. 4.6C). Hence, as observed in Fig. 4.7A, the relative frequency response
function ψl in the δ− and α−band increases for all loops. This affirms the enhancement of the
power in δ− and α−band observed over frontal electrodes.

At the lower resting state, increasing propofol concentrations increases the inhibitory synap-
tic frequency response function φiab but the nonlinear gain functions S′C,T (V ∗e,ib ) decrease (cf.
Fig. 4.6D). As observed in Fig. 4.7B, since no inhibitory synapses are involved in the ese loop,
ψese decreases with a decreasing nonlinear gain function. This reveals an important role for the
ese loop in the modulation of α−activity which decreases by decreasing the gain function, in
contrast to the upper resting state.

Within the eie, srs and esre loops, the nonlinear gains at the lower resting state decrease
by an increase of the propofol concentration while the increase in the inhibitory charge transfer
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the δ− and α−frequency bands within different anatomical loops of the thalamo-cortical system.
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and panels in (B) give the results at the lower resting state describing occipital EEG. The factor
p reflects the anesthetic propofol concentration.

more than compensates this decrease essentially leading to an increase in ψeie , ψsrs, and ψesre.
Consequently, in these loops the enhancement of inhibition plays a more substantial role than
the gain function modulation.

4.5 Reduced thalamo-cortical model

The previous section considers both thalamic and cortical inhibition revealing their role in gen-
erating δ− and α−activity. Specifically, cortical inhibition is strong and balances cortical excita-
tion. In order to study the role of the intra-thalamic inhibition for the generation of characteristic
EEG pattern under anesthesia sedation, we focus on the role of thalamic inhibition while neglect-
ing inhibition within the cortex (although, of course, cortical inhibition is present in the brain)
and refer to this model as reduced model in the following. This assumption simplifies the model
under study, while the obtained results shall reveal that the reduced model is still adequate to
reproduce observed changes in EEG rhythms within δ− and α−activity bands. The results show
clearly that thalamic inhibition balances cortical excitation as cortical inhibition does. Figure 4.8
shows the power spectra of EEG over frontal and occipital regions in the baseline and in the
anesthetic conditions computed at the upper and lower resting states of the system. It turns out
that the reduced model yields similar results compared to the full model (4.1), cf. Figs. 4.2 and
4.4.
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Fig. 4.8. The spectral power of EEG associated with the reduced thalamo-cortical model
neglecting cortical inhibition in the baseline condition (p = 1) and under sedation (p > 1). The
solid lines indicate the analytical solutions and the dashed lines show the numerical solutions of
the model system. The panels show the spectrum computed at the upper and lower resting states
in (A) and (B) reproducing the characteristics of experimental EEG spectra over the frontal and
occipital regions, respectively. Parameters are taken from sets I, II in Table 4.1 while neglecting
cortical inhibition.

4.5.1 The role of different populations and anatomical loops

To understand the role of different populations and the anatomical circuits of the reduced
thalamo-cortical model, we study the contribution of PSPs to the power spectrum in the δ−
and α− frequency bands over different brain areas. It is assumed that the system fluctu-
ations about the resting state are a linear superposition of damped noisy oscillations whose
frequencies are determined by the imaginary part of the characteristic roots of Eq. (4.5). We
select a certain root and consider the fluctuations Y (t) = [y1(t), y2(t), y3(t), y4(t)]> with yn(t) =
ûne

λt + û∗ne
λ∗t, n = 1, . . . , 4. Here λ is the root and ûn is the n−th element of its eigenvector of

the corresponding eigenvalue problem. Substituting the ansatz Y (t) = eλtu with eigenfunction
u = [ueE , u

e
S , u

i
S , u

e
R]> into Eqs. (4.5) yields

(
λ

αe
+ 1

)(
λ

βe
+ 1

)
ueE = K2(ueS − uiS)e−λτ ,(

λ

αe
+ 1

)(
λ

βe
+ 1

)
ueS = K6u

e
Ee

−λτ ,(
λ

αi
+ 1

)(
λ

βi
+ 1

)
uiS = fT (p)K7u

e
R,(

λ

αe
+ 1

)(
λ

βe
+ 1

)
ueR = K8u

e
Ee

−λτ +K9(ueS − uiS).

(4.11)
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Now we can write all the elements of eigenfunction u in terms of the first element ueE as follows

ueE = u1(λ)ueE ,

ueS =

(
K6e

−λτ

(1 + λ
αe

)(1 + λ
βe

)

)
ueE ≡ u2(λ)ueE ,

uiS =

(
K6e

−λτ

(1 + λ
αe

)(1 + λ
βe

)
−

(1 + λ
αe

)(1 + λ
βe

)

K2e−λτ

)
ueE ≡ u3(λ)ueE ,

ueR =
(1 + λ

αi
)(1 + λ

βi
)

fT (p)K7

(
K6e

−λτ

(1 + λ
αe

)(1 + λ
βe

)
−

(1 + λ
αe

)(1 + λ
βe

)

K2e−λτ

)
ueE ≡ u4(λ)ueE .

(4.12)

Then the associated normalized eigenfunction with known eigenvalue λ is

û = C (1, u2(λ), u3(λ), u4(λ))>, where C =
1√

1 + u2
2 + u2

3 + u2
4

. All elements of vector Y (t) =

[y1(t), y2(t), y3(t), y4(t)]> can be written as yn(t) = ûne
λt + û∗ne

λ∗t for n = 1, ..., 4. Here the
superscript ∗ denotes the complex conjugate. Let λ = γ + 2πiν and ûn = Rn + iIn, then yn(t)
becomes

yn(t) = (Rn + iIn)e(γ+2πiν)t + (Rn − iIn)e(γ−2πiν)t

= 2eγt(Rn cos(2πνt)− In sin(2πνt)),
(4.13)

and for each root, the contribution of excitatory and inhibitory currents to power in a certain
oscillation mode with root λ in population n can be defined by

wn =

∫ 2π
0 y2

n(t)dt

w1 + w2 + w3 + w4
. (4.14)

Since characteristic roots are associated to certain frequency bands, wn reflects the contribution
of population n to the power spectrum in a certain frequency band. For instance, w1 is the con-
tribution of excitatory currents in cortical neurons, w2 reflects the contribution of the excitatory
currents in the relay neurons, w3 the contribution of inhibitory currents in relay neurons and w4

the contribution of excitatory currents in reticular neurons.

4.5.2 Frontal spectrum

Taking a closer look at the origin of the frontal EEG, Fig. 4.9A shows the spectral power of the
system fluctuating about the upper resting state. It can be observed that under sedation (red
line), the spectral power is well enhanced within the δ− and α−band in comparison to the baseline
condition (blue line). Moreover, the δ−power peak emerges by increasing the concentration of
propofol. Figure 4.9B and C give the relative contribution {wn} of the respective populations in
the δ− and α−frequency bands, respectively. They show that the mean postsynaptic potentials
(PSPs) V e

E , V
e
S and V i

S contribute most to the δ−activity while the excitatory PSPs involving in
ese loop (i.e., V e

E and V e
S ) generate the activity in α−band.

To gain insight into the resting activity of the reduced model, we investigate the number
of resting states of the system for possible combinations of different coupling connections. The
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Chapter 4. Modeling of EEG power spectrum over frontal and occipital regions during propofol sedation

Fig. 4.9. The spectral power and the partial contributions in the brain areas describing activity
in the frontal electrodes. (A) Power spectrum in the baseline (p = 1, blue) and sedation condition
(p = 1.3, red). (B) Contributions wn (cf. Eq. (4.14)) in δ−band and (C) in the α−band. The
system fluctuates about the upper resting state of the system. Parameters are αi = 200, βi = 20,
and others are taken from set I in Table 4.1.

resting states of the reduced model obey

V ∗eE = KESST [V ∗eS − V ∗iS ],
V ∗eS = KSESC [V ∗eE ] + I0,
V ∗iS = fT (p)KSRST [V ∗eR ],
V ∗eR = KRESC [V ∗eE ] +KRSST [V ∗eS − V ∗iS ].

(4.15)

By inserting these equations into each other

V ∗eE = KSEST [KSESC [V ∗eE ] + I0 − fT (p)KSRST [H[V ∗eE ]]] , (4.16)

where H[V ∗eE ] ≡ KRESC [V ∗eE ] +
KRS

KES
V ∗eE . Thus the crossing points of V ∗eE and the right-hand

side of Eq. (4.16), i.e.

Z[V ∗eE ] ≡ KSEST [KSESC [V ∗eE ] + I0 − fT (p)KSRST [H[V ∗eE ]]] , (4.17)

or equivalently, the solutions of equation

V ∗eE − Z[V ∗eE ] = 0, (4.18)

give the solutions V ∗eE . Since all the resting states V ∗e,ia for a ∈ {E,R, S} can be written as an
implicit function of V ∗eE , the number of solutions of V ∗eE , i.e., the number of roots of Eq. (4.18),
is identical to the number of resting states [186, 188, 33].

Figure 4.10 shows a graphical construction of Eq. (4.18) for various propofol concentrations.
It can be seen that for 1 ≤ p < 2.04, there are three solutions, while for p > 2.04 there is a single
one only. Moreover, increasing factor p from p = 1 yields a downshift in V ∗eE − Z[V ∗eE ] for large
values of V ∗eE and thus the upper stable and unstable solutions approach each other, coalesce at
the critical point p = 2.04, and finally disappear, whereas the lower stable solution remains more
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Figure 4.10. The number of system resting state. The blue curves represent the right-hand
side of Eq. (4.18) subjected to various values of factor p. The intersection(s) of the blue curves
and horizontal red line give the resting solution(s) V ∗eE correspond to the roots of Eq. (4.18).
Filled and void circles denote stable and unstable solutions, respectively. At the critical value
p = 2.04 there is a saddle node solution (green circle). Parameters are taken from set I in Table
4.1.

and less unaffected. This result show that for the constant external input I0, the factor p plays
as a control parameter that determines the number of system resting state.

Figure 4.11 represents the parameter space where the system exhibits single and triple resting
solutions. It can be seen that the triple resting state occurs if the cortico-thalamic relay and
relay-cortical connections are strong enough whereas the cortico-reticular and intra-thalamic
connections are weak enough (cf. Fig. 4.11H,I and J). Moreover, cutting the connection between
cortex and relay population leads to a single resting state independent of the other parameters.

4.5.3 Occipital spectrum

To investigate the occipital EEG in some more detail, we consider different topological configu-
rations to study δ− and α−activity. Figure 4.12 illustrates the power spectra and the relative
contribution {wn}, generated by different anatomical circuit configurations computed at the
lower resting state of the system in the baseline and anesthetic conditions. At first, the plots
reveal that the anesthetic state always exhibits a diminished α−power compared to the baseline
condition, when the thalamic inhibition is involved in the system.

Figure 4.12A (I) shows a system with the simplest topology including a reciprocal projection
between cortical pyramidal neurons (E) and thalamo-cortical relay neurons (S) associated with
a time delay (ese circuit). This cortico-thalamic relay loop generates α−activity with a strong
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Fig. 4.11. Parameter space for different coupling connections. The shaded (unshaded) ar-
eas represent the parameter regions where the system exhibits triple (single) resting solutions.
Parameters are taken from set I in Table 4.1.

power spectral peak at about 10 Hz, as illustrated in Fig. 4.12B. The circuit also generates
activity in the δ−band but no power spectral peak in this range. Figure 4.12C and D reveal
that the spectral power is generated by the excitatory PSPs involving in this circuit, i.e., V e

E and
V e
S . Since no inhibitory synapses are involved here, the resulting spectrum is independent of the

anesthetic level.
Configurations (II) and (III) in Fig. 4.12A display the topology of the reduced model with

the disrupted cortico-thalamic relay circuit. These configurations yield the loss of the prominent
α−peak that indicate the important role of ese loop in the generation of α−activity. In config-
uration (II), we choose very small relay-cortical connection, because missing of this connection
diminishes the power spectrum across the entire frequency bands (if KES = 0, then PE(ν) = 0).
In configuration (III), removing the cortico-thalamic relay connection retains the esre and srs
circuits in the system that yield a strong oscillation at about 3 Hz with the clear corresponding
spectral peak. In addition, Fig. 4.12C and D show that the PSPs V e

E , V
i
S and V e

R involved in
these circuits generate the activity in δ−band.

Configuration (IV) demonstrates a system including the cortico-reticular, reticular-relay and
relay-cortical connections (esre circuit). Similar to configuration (III), the resulting spectral
power of this configuration exhibits a strong oscillation at about 3 Hz. Configurations (V) and
(VI) illustrate the reduced model with a disrupted esre closed circuit. These configurations
yield the loss of δ−peak but a strong α−power peak emerges, because the system comprises the
ese circuit. This indicates the major contributions of esre and srs circuits to the generation of
δ−activity and the ese circuit to generation of α−activity in the system.

To further reveal the role of esre and srs circuits in the generation of δ−activity and the
ese circuit in the generation of α−activity, we investigate the effect of increasing connection
strengths on the imaginary part (frequency) and real part (damping rate) of the characteristic
root corresponding to the δ− and α−activity, respectively. Figure 4.13 illustrates that the fre-
quency and the damping rate of δ−activity increase with increasing the cortico-reticular (KRE),
relay-cortical (KES) and intra-thalamic (KRS ,KSR) connections indicating an increase of fre-
quency and magnitude in the δ−band. In a similar manner, Figure 4.14 shows that the frequency
and the damping rate of α−activity increase with increasing the cortico-thalamic relay (KSE)
and relay-cortical (KES) connections which demonstrate the increasing of frequency and mag-
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Fig. 4.12. Different topological configurations, their resulting spectral power and the con-
tributions to power in the occipital electrodes. (A) Topology of the system. The solid and
dashed arrows denote present and eliminated connections, respectively. (B) Spectral power in
the baseline condition (p = 1, blue) and sedation condition (p = 1.3, red). (C) and (D) show
contributions to power wn (cf. Eq. (4.14)) in the δ−band and α−band, respectively. The systems
fluctuate about the lower resting state of the system. Parameters are taken from set II in Table
4.1.
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Fig. 4.13. Modulation of the frequency and the corresponding damping rate of δ−activity by
increase of coupling strengths in the esre and srs circuits. Parameters are taken from set II in
Table 4.1.

nitude in the α−band. An additional study (not shown) of the remaining connections, i.e.,
relay-cortical (KES) connection in the generating of δ−activity and cortico-reticular (KRE) and
the intra-thalamic (KRS ,KSR) connections in the generating of α−activity, reveals a decreasing
effect on the generation of δ− and α−power, respectively. These results suggest the important
role of esre and srs loops in the generation of δ−activity and ese loop in the generation of
α−activity.

4.6 Discussion

4.6.1 Origin of spectral peaks

A large class of general anesthetics such as propofol act on inhibitory GABAergic synaptic recep-
tors and hence enhance the inhibition in the neural populations. Accordingly one might expect
that the stronger inhibition caused by propofol would reduce spectral power. The opposite is
in fact the case; stronger inhibition induces a power surge in certain frequency bands. Fig-
ures 4.3 and 4.5 explain this power surge as an approach of the system dynamics to dynamical
oscillatory instabilities. In the control condition the external random fluctuations from other
cortical and non-cortical areas are well damped except for the α−frequency band. The power
surge of α−activity indicates that the system is lying in the vicinity of an oscillatory instability
point. The nonlinear instabilities analysis in large-scale neural activity have been demonstrated
in [176] to explain the mechanisms underlying human generalized seizures. This explanation
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Fig. 4.14. Modulation of the frequency and corresponding damping rate of the α−activity by
increase of coupling strengths in the ese circuit. Parameters are taken from set II in Table 4.1.

is in line with other studies investigating the origin of α−activity [29, 23, 91, 35, 111]. These
models do not examine explicitly the effects of anesthetic-induced prolongation of the IPSP. In
our study presented in this chapter, if the system is lying on the upper resting state, increasing
the synaptic inhibition by increasing the anesthetic concentration moves the system closer to
the instability point, decreasing the damping of external fluctuations, and hence leading to an
increase of power as observed in Fig. 4.2 for frontal electrodes. In contrast, if the system is lying
on the lower branch increased inhibition moves the system away from the oscillatory instability
point and hence a resultant decrease in power as observed in occipital electrodes, cf. Fig. 4.4.

To explain the origin of the power surge in the δ−frequency band, a slightly different mech-
anism comes into play since no spectral peak in the δ−range is present in the control condition.
Hence increased synaptic inhibition may not only move the system towards an already existing
instability point, but actually also generates this instability point for increased inhibition. Fig-
ures 4.3 and 4.5 explain the origin of the power surge in the δ−frequency band by the generation
of an oscillatory instability at frequencies in the δ−band. A more detailed analysis (cf. Fig. 4.9)
reveals that the δ−power surge is initiated at values p > 1, i.e., does not occur in the control
condition (p = 1) but for increased anesthetic concentration only. Hence, the spectral power
peak in the δ−frequency band originates from the propofol-induced inhibition (c.f. Fig. 3.6).

Our model results both extend and contrast previous findings. To the best of our knowledge,
the model is one of the first taking into account the explicit anesthetic action of propofol on
thalamic GABAergic synaptic receptors. The model suggests an explanation for the observed
changes in the EEG rhythms in the δ− and the α−frequency bands and describes well the
anteriorization of both the α− and δ−rhythms, i.e., the distinct dynamics in both frontal and
occipital cortical regions.

It seems likely that the observed characteristic changes in EEG rhythms are not just simply
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Chapter 4. Modeling of EEG power spectrum over frontal and occipital regions during propofol sedation

signatures of cortical inhibition. Our results show that the changes observed experimentally in
EEG during sedation can be reproduced with and without inhibitory cortical neurons, cf. Fig 4.8.
The neglect of cortical inhibition put emphasis on the effect of propofol on the inhibitory synaptic
receptors in the thalamic cells as well as reducing the dimensionality of the model. By reducing
the dimensionality of the mathematical model we are able to utilize their analytical tractability to
obtain some inequality conditions for the stability of the resting states and even to gain further
insights into the mechanisms responsible for the spectral features [111]. The application of
analytical constraints on model parameters remains to be investigated in power spectral fitting
methods, which it has the potential to improve previous work in fitting the model’s predictions
to experimental data [32, 34, 33]. This issue would be investigated in the following chapter.

Moreover, it is important to note that such a reduced model does not rule out other proposed
models elucidating the mechanisms underlying the effects of anesthetic agents on brain dynamics.
For instance, the findings in the previous chapter stressed the importance of cortical inhibitory
neurons support the result obtained in this chapter; the increase of α−power over frontal region
can be caused by increase in the gain functions of thalamo-cortical network. Our results reveal
that it is possible to replicate several observed EEG phenomena by modeling anesthetic action
only in the thalamo-cortical loops. Several previous studies describing EEG spectra by a cortico-
thalamic model consider both thalamic and cortical anesthetic action [81, 113, 35, 112] and
point out the importance of cortical anesthetic action. Even purely cortical models [31, 215]
may explain several spectral features observed in EEG under anesthesia. Most of the previous
models are either rather complex with several tens of free parameters and hence many degrees
of freedom permitting to fit the experimental data for a small subset of parameters [31, 215], or
they identify specific single neuron mechanisms to be responsible for a certain anesthetic effect
in macroscopic EEG, e.g., [81, 112, 113]. In contrast, our model is comparatively simple while
proposing a major underlying mechanism: the activation of pre-defined oscillation modes whose
amplitude and frequency depends on the level of synaptic inhibition.

The work presented in this study considers only light sedation, i.e., low propofol concentra-
tions, far from those required for full surgical anesthesia. Some previous studies have investigated
in detail the EEG power spectra at higher concentrations of propofol where additional characteris-
tic features emerge, such as burst suppression [114], broad spatial EEG coherence [18, 19, 87, 82],
strong spectral power in the β−band [113, 82], and functional fragmentation accompanied by
a drop of population firing rate and increased spectral power at frequencies < 1 Hz [179]. For
instance, Fig. 4.1C shows emerging β−activity well after light sedation that we consider in the
present work. Our model does not explain these latter features, since they emerge for higher
propofol concentrations and may result from fundamental changes in the interaction between neu-
ral structures, cf. [81] explaining the β−power surge by the interaction of two thalamo-cortical
modules. To describe the features seen at high anesthetic concentration, it is necessary to in-
corporate more features of anesthetic actions on neural population than the effects considered
in this study. Some of our preliminary simulations (not shown) demonstrate that, by assuming
that anesthesia delays axonal transmission, the model used in this study is able to reproduce the
β−power surge. However, this effect on the axonal transmission delay needs more experimental
indication. Furthermore, recent studies have linked the low-frequency phase modulation of the
α−oscillation amplitudes to different states of unconsciousness [82, 322]. They have reported
that two distinct patterns can be observed during propofol anesthesia. First, the trough-max
pattern which appears at the transition into and out of unconsciousness. Second, the peak-max
pattern which appears at profound unconsciousness. While these patterns can be used to track
the states of unconsciousness, however, the mechanisms underlying these patterns remain to be
understood. Such phase-amplitude modulation patterns are not visible in power spectral analysis
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and we postpone their discussion to later work since the corresponding discussion would exceed
the major aim of the present work.

Our model describes very well the action of propofol on neural populations in the cortex
and thalamus while the fundamental interactions of cortex, thalamus and other sub-cortical
structures such as the brainstem and hippocampus are retained. In contrast, larger anesthetic
concentrations may affect not only the activity in single populations but also the interaction
between a larger set of neural structures. This effect on the inter-area interactions has been
been quantified in several previous experimental studies and has been termed fragmentation or
connectivity break-down [179, 83, 323].

4.6.2 Multiple resting states

Experimental EEG under propofol anesthesia shows an anteriorization in the δ− and α−frequency
bands, cf. Fig. 4.1 and [82, 18, 179]. The recent study of Vijayan et al. [112] is one of the first
to explain the distinct evolution of spectral power. They suggest two distinct models for the
anteriorization during propofol anesthesia: one for the frontal and one for the occipital EEG
α−activity; where the occipital cortico-thalamic connection exhibits an additional hyperpolar-
izing mechanism lowering the resting state population firing rate. Their model is based on
simulations of small numbers of neurons, each with multiple specialized ion channels. The ante-
riorization is largely driven by a specialized subset of thalamic relay neurons that project only
to the occipital cortex. The oscillatory activity of these neurons secondarily induce high- and
low-activity resting states. In our study presented in this chapter, different systems with distinct
parameter sets explain the spectral power of EEG associated with frontal and occipital head
regions. In addition, our model extends the explanation of Vijayan et al. [112] by providing
a more generic dynamical systems explanation for both the δ− and the α−frequency bands,
and emphasizes the importance of nonlinear gain functions in the corresponding resting states,
rather than molecular scale ion channel activity. Our mathematical analysis of the power spec-
trum reveals that these gain functions are dependent on the resting potential values. Increasing
nonlinear cortical gain functions induce a power surge in the α−range, whereas decreasing non-
linear cortical gain functions diminish the α−power. This is in line with the cortical activation
hypothesis, which states that an increase or decrease in the firing rates of cortical pyramidal
neurons leads to an increase or decrease in α−activity, respectively [227, 32]. Since increases in
the nonlinear gains occur at high activity-resting states only, while decreasing nonlinear gains
are present in low activity-resting states (Fig. 4.6), our findings suggest the important role of
multiple resting states at high and low population firing rates and affirms previous EEG modeling
studies [40, 229, 91] pointing out the importance of multiple resting states to explain unstimu-
lated EEG. This is affirmed by Fig. 4.11 illustrating that cutting the connections between cortex
and relay population leads the loss of multiple states and consequently the destruction of realistic
frontal population activity. In contrast, the evolution of the δ−power is rather independent of
the resting state, and increases for increasing propofol concentrations for both increasing and
decreasing nonlinear gains. This strongly suggests that the α−rhythm is fundamentally different
from the δ−rhythm.

4.6.3 Effective sub-circuits in the cortico-thalamic model

As argued before, the origin of the δ−rhythm appears to be fundamentally different to the origin
of α−rhythm. A detailed analysis of the spectral contributions of the populations to δ− and
α−power, cf. Figs. 4.9 and 4.12, reveals that strong δ−power occurs primarily when there is
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a strong connection between thalamic areas (srs loop) and from cortex to the reticular nucleus,
reticular to relay nucleus and relay to cortex (esre loop), while strong α−power is generated
primarily by the cortico-thalamic relay circuit (ese loop). These results are based on an investi-
gation of small deviations from the resting states in light sedation and are not directly related
to nonlinear signal features observed in deeper anesthesia states, such as spindles.

Having identified these sub-circuits, their subsequent detailed analysis reveals that the frontal
enhancement and occipital attenuation of α−activity originates primarily from a (frontal) in-
crease and (occipital) decrease in the nonlinear gain functions within the thalamo-cortical ese
loop. In turn, this result supports the presence of multiple resting states derived in the earlier
part of our analysis. Hence, we suggest that the phenomenon of anteriorization of α−power re-
sults from fronto-occipital differences in the nonlinear gain functions in the cortico-thalamic relay
circuit. The previous study of Vijayan et al. [112] on the anteriorization of α−activity supports
a similar idea. These results are also in agreement with the recent findings of Hindriks & van
Putten [227]. They show that changes of transfer function properties and synaptic parameters,
directly or indirectly, lead to changes in the gain functions by altering the values of the resting
states of the system that cause the α−response modulations. Their results affirm our hypothesis
that the increase or decrease of α−power spectrum depends profoundly on the the resting state
values of the system and the corresponding nonlinear gain functions. This finding is well in line
with previous modeling studies on the origin of occipital α−activity in the absence of anesthesia
explaining the amplitude modification by modified nonlinear gain changes.

The changes in the δ−frequency band are explained by increases in the charge transfer within
the inhibitory synapses what results to an increase of the frequency response function within the
loops involving inhibitory neurons ( such as srs and esre loops), which essentially enhances the
δ−power. This hypothesis on the interplay of nonlinear gain and synaptic inhibition has been
briefly mentioned in a previous work Hutt [111].

In the present chapter, our analysis aimed to extract general interaction mechanism for the
generation of spectral EEG characteristics. To this end, we employed a reductionist approach:
starting from a complex model and reducing it step by step to find a neurophysiologically rea-
sonable minimal model that explains as much experimental features as possible. The approach
is motivated by the insight that general anesthesia is a macroscopic global and fundamental
effect that occurs in all species of animals, even though they exhibit different detailed neural
structures. Consequently, the underlying mechanism should be rather unspecific in biological
detail but rather general in concept. We have identified elements of principal underlying mecha-
nisms to explain δ− and α−power observed during propofol anesthesia sedation in adult humans,
namely the nonlinear population gain, the level of synaptic inhibition and the interaction of neu-
ral sub-circuits (or microcircuits). It appears that one of the most important properties of the
sub-circuits is their ability to generate an oscillation. Since these elements promise to reflect
underlying principles, they are rather independent of the choice of the anesthetic agent and may
generalize to the larger class of anesthetic GABAergic [324], or volatile drugs [313].

Several previous modeling studies have explained the α−rhythm by the delayed thalamo-
cortical feedback [29, 23, 173, 204, 227], or by a cortical model, cf. [325, 326, 111]. At first glance
these two explanations appear exclusive. However the underlying principle put forward in the
present chapter is not contradictory to cortical and thalamo-cortical circuits since both represent
oscillating sub-circuits. Previous cortical models have included feedback loops of excitatory and
inhibitory populations and most thalamo-cortical feedback models oscillate due to delay, which

76



4.7. Conclusion

is known to facilitate oscillations [30, 32]. Consequently, the α−rhythm may originates from a
general class of oscillating circuits. This interpretation is supported by the experimental findings
that the brain is highly adaptive and brain areas may take over tasks of other areas as seen under
general anesthesia [327], in sleep [328], or after brain injury [329].

Similarly, various sources and mechanisms have been proposed for EEG δ−activity. Previous
experimental studies suggest a cortical origin of δ−waves under anesthesia [19] and point out
the importance of the cortico-thalamic feedback in the generation of δ−waves in anesthesia [83]
and sleep [230, 330], while δ−activity during sleep may also results from a connected network of
thalamus, brainstem and different cortical areas [331]. In the present chapter, our model results
point out the importance of the intra-thalamic feedback of reticular and relay populations as
part of the thalamo-cortical feedback loop, which is in full line with the previous literature.

4.6.4 Model limitations

Our model concentrates on the effects of low concentrations of propofol, whereas higher anesthetic
concentrations lead to additional spectral EEG features not captured by the current model, such
as an increase in β−power just before loss of consciousness [82], or burst suppression patterns
after loss of consciousness [114, 266]. To consider these effects, a future model will incorporate
additional thalamo-cortical modules and nonlinear dynamics in thalamic populations. In addi-
tion, the model fitting with experimental data will reveal the optimal topology model that is
able to reproduce the observed specific features in experimental data [332].

4.7 Conclusion

We would conclude that - using a model of cortico-thalamic loops - it is possible to replicate the
different frontal and occipital changes in the α− and δ−rhythms in the EEG, caused by modest
concentrations of propofol. The α−rhythm is primarily dependent on the cortico-thalamic relay
interactions; dependent on the mean potential values of the resting states of the system, an
increase or decrease in the gain functions within the thalamo-cortical circuits results in an increase
or decrease in the spectral power in the α−band, whereas the increased propofol inhibition acting
via the thalamo-cortical loops is necessary for the increase in δ−waves. This model also offers a
plausible explanation of the eyes-closed occipital alpha rhythm.
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Abstract

Mathematical modeling is a powerful tool which enables researchers to describe the dynamics
of complex systems. Starting with a robust model, since the model output depends on the
model parameters, reproducing the experimental measurements requires selecting a good set of
unknown parameters. However, inverse problem i.e., finding a set of model parameters that yields
the best possible fits to the recording data is a very challenging problem. It has been extensively
demonstrated that minimizing the error between the model prediction and the measured data
as a nonlinear optimization problem has solved most of the parameter estimation problems. In
this chapter, we apply different optimization algorithms namely Levenberg-Marquardt (LM),
Particle Swarm Optimization (PSO), Differential Evolution (DE), Metropolis-Hastings (MH)
and Simulated Annealing (SA) algorithms to solve the considered inverse problems. To evaluate
the performance of these algorithms, two case studies are investigated: a stochastic damped
harmonic oscillator, and a stochastic linear delay differential equation, which pose an unimodal
and a multimodal optimization problem, respectively. Our results show that although in the
case of unimodal problem, the LM algorithm converges to the minimum faster than the other
algorithms, it fails to arrive at the global minimum when the case study poses a multimodal
fitness function. In contrast, PSO and DE algorithms are computationally expensive due to the
high number of function evaluations, however, they significantly outperform the other algorithms
in finding the global solution. In third case study, a thalamo-cortical model is fitted to the power
spectra of measured EEG data. We show that the proposed model fits very well to the EEG
power spectra, particularly to the spectral peaks observed in delta and alpha frequency ranges.
Moreover, for each case study we investigate the practical identifiability of the model parameters
by plotting the confidence regions of the estimates and analyzing the correlation and sensitivity
matrices.

In sum, using the framework presented in this study, given a set of coupled ordinary or delay
differential equations subjected to additive noise, we are able to accurately estimate the inde-
pendent model parameters while avoiding the computational costs due to numerical integration
of the model equations.
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5.1 Parameter estimation (inverse problem)

Although mathematical modeling plays a key role in describing the dynamics of complex sys-
tems, it still remains a challenging problem [49, 50, 51, 52]. In order to build a successful model
formulation which allows us to reveal the mechanisms underlying a complex system, first we need
to select a robust model whose output is consistent with our a priori available knowledge about
the system dynamics [53, 54, 55]. The selected model should be able to reproduce, at least quali-
tatively, the most important features of the experimental observations. This task is referred to as
structure identification [56, 57]. The subsequent task is parameter estimation [58, 59]. After the
model identification, one needs to determine the unknown model parameters. Since the output
of a model strongly depends on the values of its parameters, reproducing specific features of the
experimental measurements requires selecting a suitable set of the unknown parameters. There-
fore, parameter estimation is a very important component of the model developing procedure.
Broadly speaking, given a set of experimental data and a particular mathematical model, the
aim of parameter estimation (also known as inverse problem or model calibration) is to identify
the unknown model parameters from the measurements for which substituting the estimated
parameters in the model equations reproduces the experimental data in the best possible way
[54]. Nevertheless, finding a set of model parameters which accurately fits the recorded data is
an extremely difficult task, especially for nonlinear dynamic models with many parameters and
constraints. Numerical integration of differential equations and finding the best solution in the
entire of search domain (global minimum) are two major challenges in the parameter estimation
problems [60].

In the past few years, considerable attention has been paid to optimization algorithms. Con-
sequently, numerous optimization algorithms have been applied successfully in a wide range of
scientific areas with different applications . It has been extensively demonstrated that minimiz-
ing a fitness function defined by the discrepancy between the model output and the measured
data is able to solve most of the parameter estimation problems [333, 334, 335].

It is important to point out that there are various optimization algorithms for solving non-
linear optimization problems subject to nonlinear constraints, and no single method is the best
for all problems or even for a broad class of problems [63]. The choice of optimization technique
usually depends on the linearity or nonlinearity of the model and its constraints, the problem
dimension, as well as the our a priori knowledge about the system. One must note that the most
important criterion for choosing a proper search algorithm is the landscape of the fitness func-
tion, in which it poses a unimodal or multimodal optimization problem. In general, optimization
algorithms can be divided into local and global search algorithms [336]. The search algorithms
which do not get stuck in local minima are necessary to be exploited especially to solve parameter
estimation problems in systems biology, because in this context multimodal (non-convex) opti-
mization problems are more pervasive than unimodal problems [335, 337]. It has been extensively
reported that for solving the inverse problems in biological systems, evolutionary algorithms
(stochastic global search method) outperform the local search methods [61, 62, 54, 338]. In the
present study, in order to solve the the considered estimation problems, we employ different op-
timization algorithms, namely Levenberg-Marquardt (LM) algorithm as a gradient descent local
search method, Particle Swarm Optimization (PSO) and Differential Evolution (DE) algorithms
as the stochastic global search methods, and Metropolis-Hastings (MH) and Simulated Anneal-
ing (SA) as the popular sampling methods belong to Monte Carlo Markov Chain (MCMC)
algorithms, which are widely used in the Bayesian inference. Moreover, their performance is
compared to determine which algorithm is more suitable for each of the parameter estimation
problem considered in this study.
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It is well known that the dynamics of a majority of biological systems can be described by a
set of coupled Ordinary Differential Equations (ODEs), Partial Differential Equations (PDEs),
or Delay Differential Equations (DDEs) [63]. Moreover, biological systems are often subject to
external noise from signal stimuli and environmental perturbations. Thereby, in this chapter we
focus on the parameter estimation of systems whose dynamics are governed by stochastic ODEs
or DDEs rather than deterministic differential equations or explicit algebraic functions. More
precisely, the parameter estimation problem in three case studies are investigated. As in silico
parameter estimation problem, we estimate the parameters of a damped harmonic oscillator and
those of a linear scalar delay differential equation, in the presence of additive noise, by fitting
the model equations to a set of pseudo-experimental data. The first and second case studies
pose an unimodal and a multimodal optimization problem, respectively. We show that in the
unimodal case study, the LM method as a local search algorithm exhibits fast convergence to the
only minimum of problem, whereas in the multimodal case study it easily gets stuck at a local
minimum and thus is not able to find the global solution. In order to find the global minimum
using LM algorithm, the algorithm has to be started with an initial guess in the vicinity of the
solution. In contrast, PSO and DE algorithms usually require a high number of fitness function
evaluations, which results in larger computational costs compared to local search algorithms.
However, they significantly outperform the local search algorithms in converging to the global
solution. In addition, the PSO algorithm has the advantage of being able to use the evaluated
fitness functions to construct the confidence regions for the estimated parameters. In third case
study, as in vivo parameter estimation problem, a thalamo-cortical model is fitted to the recorded
EEG data in awake and anesthesia conditions. It is shown that the proposed model is able to fit
very well to the spectral power peaks observed in the delta and alpha frequency ranges, whereas
the more complex models with additional parameters do not exhibit satisfactory results.

After the parameter estimation, another challenge is the identifiability of the estimates [59,
64]. The identifiability analysis investigates whether the model parameters can be uniquely
determined by the given experimental data [55]. For each carried out case study, we employ
different methods to address this issue. The confidence regions of the estimates are plotted and
the correlation and sensitivity matrices are analyzed to assess the accuracy of the estimates in
each case study.

We also note that numerical integration of differential equations is a major time consuming
problem for the parameter estimation of nonlinear dynamic systems [339]. In this chapter we
aim to present a general framework for estimating the parameters of systems described by a
set of stochastic ODEs or DDEs through fitting the model’s spectrum to the measured data.
In the proposed scheme, the power spectrum of the model equations is computed with the aid
of Green’s function method, which provides a great advantage in terms of optimization speed,
because it allows us to avoid the numerical integration of model equations.

5.2 Optimization problem

5.2.1 Formulating an optimization problem

Many real-world processes in several scientific areas such as physics, chemistry, biology, bioinfor-
matics, computer science, economics, and engineering involve optimization problems. Solutions
of these problems are not account as correct or incorrect, but instead are rated in terms of qual-
ity. In general, the aim of solving an optimization problem is to find the best solution which
maximizes or minimizes a real function referred to as fitness or objective function (also known
as cost function), while satisfying some constraints. The optimal solution must be chosen from a
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set of candidate solutions known as the search space. In maximization, we search for a solution
which has a greater or equal value of the objective function than any other solution, whereas in
minimization we investigate the opposite: a solution which has a fitness function value smaller
or equal than all the others. Therefore maximization of function f is equivalent to minimization
of −f . Although both maximization and minimization occur in optimization problems, we can
easily convert a maximization problem into a minimization problem, and vice versa. In this
work, we choose to solve minimization problems.

An optimization problem subject to algebraic constraints and upper and lower bounds for
the variables can be mathematically expressed as follows:

Given f(~x) : S ⊆ RN → R
find ~x∗ ∈ S : f( ~x∗) ≤ f(~x) (∀~x ∈ S)

Subject to :

hi(~x) = 0 i = 1, 2, ...,m

gi(~x) ≤ 0 i = 1, 2, ..., q

~xlb ≤ ~x ≤ ~xub

where f(~x) known as as objective function (fitness function or cost function) is the function being
optimized, and ~x denotes a candidate solution. The candidate solutions can be described as a
vector of N independent variables; ~x = [x1, x2, ..., xN ]> ∈ S ⊆ RN . The constraints represented
by hi(~x) = 0 are called equality constraints, and those represented by gi(~x) ≤ 0 are called
inequality constraints. The equality and inequality constraints could be linear or nonlinear. The
~xlb and ~xub indicate the lower and upper bounds to the candidate solutions, respectively. The
domain S ⊆ RN is called the search space (or parameter space) which composes all the possible
solutions known as a position, agent or particle. The parameter N is the dimensions of the search
space, i.e. the number of variables or parameters involved in optimization problem. The output
of the fitness function at each solution is a single scalar value which determines the goodness
of that solution. A local minimum is a candidate solution which has a smaller value of the
objective function than any other candidate solution in a particular region of the search space.
The minimum ~x∗ ∈ RN which has the smallest value of the objective function in the entire search
space is called the global minimum. Mathematically, ~x∗ ∈ S is called a global minimum for the
function f if

∀~x ∈ S : f(~x∗) ≤ f(~x). (5.1)

5.2.2 Objective function

The most widely used criteria to evaluate the goodness of a model fit are the maximum likeli-
hood estimation (MLE) and the least-squares estimation (LSE) [340, 334]. In MLE which was
originally introduced by R.A. Fisher in 1912 [341], we search to obtain the parameter probability
distributions that produce the observed data most likely [342]. In other words, the MLE assesses
the quality of estimated parameters by maximizing the likelihood function (or equivalently the
log-likelihood function which is easier to work mathematically). The likelihood function is the
probability of obtaining the set of observed data, with a given set of parameter values. The
set of values of the parameters which maximize the likelihood function is called the maximum
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likelihood estimator. Using LSE, we seek for a set of parameter values that provides the most
closest model fit to the experimental data by minimizing the (weighted) sum of squared error
(SSE) between the measured and the simulated data [343, 344]. Both approaches have been
applied successfully in a wide variety of optimization problems while they have their advantages
in the proper situations. The MLE method used in Bayesian paradigm is able to handle the
noise in the system as well as the uncertainty in parameters, since it treats the parameters as
random variables with a prior distribution [345]. Moreover, the MLE gives the whole probability
distribution of the parameters rather than a single optimal values in LSE approach. However,
the former method is more complex and more expensive in terms of computational cost than the
latter method [56]. Especially, the MLE method used in the frequentist (classical) framework is
more simpler, and is more suitable for high-dimensional models i.e., models with a large numbers
of parameters [57]. Interestingly, if we assume that the experimental errors are independent and
normally distributed (the measurement noise is uncorrelated with Gaussian distribution), the
MLE is equivalent to LSE [346, 343]:

argmax
p

{
P(p)

}
= argmin

p

{
E(p)

}
, (5.2)

where

P(p)) = ln

Ny∏
i=1

(
1

2πσ2
i

) 1
2

− 1

2

 N∑
i=1

[(
Yi(Xdata)− Ŷi(Xdata,p)

)2

σ2
i

] , (5.3)

E(p) =

Ny∑
i=1

[(
Yi(Xdata)− Ŷi(Xdata,p)

)2

σ2
i

]
, (5.4)

where E(p) is the weighted least-squares cost function, Yi(Xdata) denotes the measured data in
the i-th data point , Ŷi(Xdata,p) represents the corresponding model prediction, p the param-
eter vector being estimated, σi are the measurement errors (the variance of the experimental
fluctuations), and Ny is the number of sampling points of the observed data. If we assume that
all variances σ2

i are equal, the Eq. (5.7) simplifies to the well-known chi-squared error criterion
[347]

χ2 =

Ny∑
i=1

(
Yi(Xdata)− Ŷi(Xdata,p)

)2
. (5.5)

In the results section, it is shown that if with the aid of standard chi-squared error criterion
we were not able to fit a model to the spectral power peaks in certain frequency bands, we employ
a modified chi-squared error criterion referred to as the biased weighting chi-squared function
given by

χ2 = c1

N1∑
i=1

(
Yi(Xdata)− Ŷi(Xdata,p)

)2
+ c2

N2∑
i=N1

(
Yi(Xdata)− Ŷi(Xdata,p)

)2
+

c3

N3∑
i=N2

(
Yi(Xdata)− Ŷi(Xdata,p)

)2
+ c4

Ny∑
i=N3

(
Yi(Xdata)− Ŷi(Xdata,p)

)2
,

(5.6)
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where c1, c2 c3 and c4 are manually chosen constants depending on the observed spectral peaks
in each estimation problem. The constants N1, N2, and N3 can be chosen in such a way that
the intervals [1, N1], [N1, N2], [N2, N3] and [N3, Ny] contains the delta, theta, alpha and beta
frequency bands, respectively. Then, a large values of ci for i = 1, 2, 3, 4 forces the model
output to be fitted with the observed spectral peaks within corresponding frequency ranges.
It is trivial that c1 = c2 = c3 = 1 yields the well-known chi-squared error criterion given by
Eq. (5.5). To fit the model’s power spectrum to the empirical data, we can take the logarithm
of spectral power as Y (Xdata), where Xdata represents the frequency f in Hz, i.e., Ŷi(Xdata,p) =
log(Powermodel(fi,p)), where p contains all the unknown parameters to be estimated.

5.2.3 Types of optimization methods

Optimization methods can be broadly divided into two major groups known as local optimiza-
tion methods and global optimization methods. Local optimization methods can be further
subdivided into two categories. First, gradient based methods like Levenberg-Marquardt and
Gauss-Newton algorithms, which involve the use of derivative information and thus cannot be
applied to non-smooth problems. Second, direct search methods such as Needler-Mead simplex,
Hooke-Jeeves and Downhill simplex algorithm, which involve the use of function evaluations only
and do not need the derivative information. Local optimization methods are initialized with a
predefined guess for the parameter values and in order to obtain satisfactory results one has to
manually tune the initial parameters. These algorithms easily get trapped at a local minimum
if they are not initialized close to the global minimum. Several studies have been reported that
although the local search algorithms converge very rapidly on a solution, they fail to arrive at the
global minimum when the objective function has several minima [61, 63, 54, 348]. To overcome
such drawbacks, global optimization methods have been widely used for the solving of nonlin-
ear optimization problems [64, 338, 57]. Global optimization methods need neither an initial
guess for the parameters nor the gradient of the objective function. In general, these methods
can be mainly classified as deterministic [349, 350], and stochastic approaches [351, 352, 353].
In contrast to deterministic methods which rely on the analytical properties of the problem,
stochastic methods rest on probabilistic assumptions [354, 355]. Although stochastic meth-
ods can not guarantee the convergence to a global optimum, they particularly adapt better to
black-box optimization problems (problems that pose no known structure as a priori) and the
extremely ill-behaved functions since they do not calculate derivatives of the objective func-
tions [356, 357, 358]. Stochastic methods are also usually faster and more efficient in locating a
global minimum than deterministic methods [359, 360].

There are several kinds of stochastic global optimization methods, which are mostly based
on biological or physical phenomena [361, 362]: Adaptive stochastic methods [363, 364, 365],
Clustering methods [366, 367], Taboo Search, and Evolutionary algorithms (including Genetic
algorithm, Evolutionary Programming, Evolution Strategies and swarm-based algorithms). Evo-
lutionary algorithms (EAs) are stochastic search methods which incorporate a random search
principle existing in natural systems including biological evolution (such as mating and muta-
tion) and social swarming behavior of living organisms (such as birds flocking or fish schooling).
Since EAs require many more fitness function evaluations, the high computational costs due
to the function evaluations will in general lead to a slower convergence to the global solution.
However, one can use parallelized algorithms to reduce the computational cost of the implemen-
tations while still finds a better solutions via EAs rather than using local search algorithms.
Furthermore, their performance is independent of initial guesses for the model parameters. A
large number of studies have been applied successfully different paradigms of EAs to solve in-
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verse problems in various types of biological systems and their robustness have been reported
extensively [368, 369, 370, 61, 63, 54, 371, 336]. In addition to the general advantages mentioned
above, DE and PSO show better performance, faster convergence speed, and lower computa-
tional cost than other EAs [372, 373, 374]. In the following section the details of these methods
are described, and we will see that they are simple to implement and have a few of parameters
which require tuning. To sum up, although the EAs do not provide a guarantee for finding the
global minimum, their robustness make them the best candidates for solving inverse problems in
particular for multimodal (non-convex) problems.
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5.3 Optimization algorithms

In this section, we briefly review the optimization algorithms employed in this work and then
explore their performance by estimating the model parameters of the two case studies presented
in section 5.5. First, we present a popular deterministic local optimization method known as
Levenberg-Marquardt (LM) algorithm, which is a gradient-based method. In the results section,
we show that the goodness of solutions obtained by this algorithm heavily depends on the initial
conditions. Then, we present two robust global optimization methods known as Particle Swarm
Optimization (PSO) and Differential Evolution (DE) algorithms which both are stochastic and
derivative-free search methods. Finally, we explain two widely used Monte Carlo Markov Chain
(MCMC) methods known as Metropolis-Hastings (MH) and Simulated Annealing (SA). For
the two case studies (one unimodal and one multimodal optimization problem), we will compare
performance of the mentioned algorithms. The outperformed algorithm is employed in parameter
estimation of a thalamo-cortical model through the model’s fitting to the EEG spectral power
during awake and anesthesia conditions.

5.3.1 Levenberg-Marquardt algorithm (LM)

The Levenberg-Marquardt (LM) algorithm is a robust curve-fitting algorithm which is a combi-
nation of Gauss-Newton algorithm and gradient descent method (also known as steepest descent
method). In the gradient descent method, the least squares function is minimized by updating
the parameter values in the direction of the greatest decrease in error function i.e., the direction
opposite to the gradient of fitness function. This algorithm exhibits a slow, but guaranteed
convergence to a local minimum. In the Gauss Newton method, it is assumed that the least
squares function is locally quadratic around the minimum. This method is very fast near a local
minimum, however there is no guarantee of convergence to a minimum when the parameters are
far from the solution. The LM algorithm incorporates the fast convergence of Gauss Newton
algorithm and the stability of gradient descent algorithm. This method is simpler than Gauss
Newton method since the Hessian does not need to be evaluated exactly, while it converges to
the minimum faster than the gradient descent algorithm. When the current parameter values are
far from a minimum, the LM algorithm behaves as gradient-descent method, thus converges to
a local minimum. In contrast, when the parameters are close to a minimum, the LM algorithm
acts like Gauss-Newton method, thus exhibits fast convergence to the solution.

Consider the sum of squared errors between the data points and the model prediction, referred
to as the least squares function:

E(p) =

Ny∑
i=1

[(
Yi(Xdata)− Ŷi(Xdata,p)

)2

σ2
i

]
, (5.7)

= r>Wr, (5.8)

with the residual vector defined by r =
Ny∑
i=1

(
Yi(Xdata)− Ŷi(Xdata,p)

)2
, where Yi(Xdata) indicates

the measured data in the i-th data point from Ny sampling points, Ŷi(Xdata,p) represents the
corresponding model prediction with model parameters p, and W is a diagonal matrix with the
elments of Wii = 1/σ2

i , where σi is uncertainty in the measurement.
In order to minimize the least squares function E(p), at each iteration step, the parameter

vector p is updated to p+δ, while δ can be determined by linearizing the differentiable function
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Ŷ (Xdata,p):
Ŷ (Xdata,p+ δ) ≈ Ŷ (Xdata,p) + Jδ, (5.9)

where J(p) =
∂Ŷ (Xdata,p)

∂p
|p is an Ny ×Np Jacobian matrix evaluated at p. Substituting this

approximation in the least squares function given by Eq. (5.7) yields:

E(p+ δ) ≈ (r − Jδ)>W (r − Jδ) . (5.10)

Taking the derivative of E(p+ δ) with respect to δ and setting the result to zero gives the
so-called normal equations

Hδ = J>Wr, (5.11)

where H = J>WJ indicates an approximation to the Hessian function of 1
2r
>Wr [375], so

that this approximation leads to a rapid convergence. Note that J>Wr is along the steepest
descent direction, because the gradient of 1

2r
>Wr is equal to −J>Wr [376]. Levenberg added

the (non-negative) damping factor λ to determine the trade-off between steepest descent and the
quadratic approximation in the update rule [377], leading to the augmented normal equations

(H + λI) δ = J>Wr, (5.12)

in which small value of damping factor λ results in a Gauss-Newton update, whereas large value
of λ results in a gradient descent update. In general, the efficiency of LM algorithm depends
on the choice of the damping factor. In a standard method suggested by Marquardt, at each
iteration, the damping factor is adjusted according to whether the error function r increases or
decreases. When the error function is decreased as a result of the update, then the damping
factor λ is reduced by a fixed factor (for instance L↓), the parameters are updated and the
process is repeated with a decreased damping factor. If an iteration gives insufficient decrease
in the error function, damping factor λ increases a larger value (for instance with the factor L↑)
and the process is repeated until a decrease in the error is found [378, 379]. The above algorithm
has the disadvantage that if the value of λ is large, the Hessian matrix H is not used at all, which
leads to a slow convergence in the direction of the small gradient. To remedy this shortcoming,
Marquardt suggested to replace the identity matrix I with the diagonal of Hessian [380]

(H + λ diag(H)) δ = J>Wr. (5.13)

In this manner, each component of the gradient is scaled according to the curvature. This results
in a larger movement along the directions where the gradient is smaller. Taken together, given
an initial guess, the LM algorithm iteratively moves the guess point towards a minimum with
taking steps δ, which at each iteration, are computed from Eq. (5.13). The pseudo-code of the
LM algorithm is shown in Algorithm 5.1. In Ref. [381], it has been suggested that the parameters
λ = 0.001, L↑ = 11, L↓ = 9, and ε = 0.01 have good convergence properties.
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Algorithm 5.1 LM algorithm

1. Initialize with a parameter set ~p in the search space; ~p ∈ [~lb, ~up].
2. while (k < max evaluations)) do
3. Compute δ from (H + λdiag(H)) δ = J>Wr,
4. ~pnew = ~p+ δ
5. Evaluate E(~pnew), and ρ = (E(~p)− E(~pnew)) /

(
2δ>(λδ + J>Wr)

)
,

6. if ρ ≤ ε then
7. Update the parameters: ~p = ~pnew + δ

Decrease the damping factor: λ = λ/L↓
8. else
9. Reject the increment δ; ~pnew = ~p

Increase the damping factor: λ = λL↑
10. end if
11. end while

5.3.2 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a population-based optimization method used to find the
globally optimal solution of an optimization problem. The PSO algorithm utilizes a stochastic
search method which is inspired by social behavior patterns of organisms that live and interact
within a large group, such as a flock of birds or a school of fish. The work of Reeves [382],
Reynolds [383], and some years later, Heppner and Grenander on the modeling of collective
behavior of a flock of birds [384] inspired James Kennedy and Russell C. Eberhart (social-
psychologist) to combine cognitive abilities with social interaction leading to the Particle Swarm
Optimizer [385]. Since then, many researchers have proposed different variants of PSO to improve
its performance [386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396].

During the past decades, the PSO algorithm and its variants have been applied successfully
in different scientific fields to solve a wide variety of optimization problems. In particular, PSO
as a global optimization technique has obtained significant popularity due to its robust searching
mechanism, excellent convergence and simple implementation. It is important to point out that
PSO requires neither derivative information nor good initial guesses for the model parameters.
Thus, PSO makes its use appealing when the gradient of objective function is either unavailable
(discontinuous objective function) or computationally expensive to obtain.

The PSO algorithm belongs to the larger class of evolutionary algorithms (EAs), thus it
shares many common concepts with other evolutionary search method such as Genetic Algorithm
(GA). For instance, PSO and GA are both population based which initialize with a population
of random potential solutions. They evaluate the individuals by measuring their fitness values,
and explore the search space iteratively for the optimum solution by updating the particles.
However, in contrast to GA, PSO does not have genetic operators such as crossover and mutation.
Furthermore, in PSO, candidate solutions known as particles, are evolved by cooperation and
competition between each other, and they have memory which is the characteristic feature of
the PSO algorithm. However, in GA the current population is the only memory available for the
individuals.

The PSO method maintains a population of S particles called as swarm in which the position
of each particle in the swarm can be regarded as a candidate solution to the optimization problem.
In general, a particle (also known as an agent) is interconnected to other particles so that each
particle can share the information with every other particle. The shared information contains
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the best location found so far by a particle itself and the best location achieved so far across the
whole population. In a swarm, any particle has a position and a pseudo velocity. The initial
position and velocity of particles are uniformly random values within the search space bounds.
Then, at each iteration, the velocity of each particle is updated by the updating rule and is
added to the particle’s current position to move it to a new position. The current position of
any particle through the search space depends on three terms: 1) Its previous position which
is known as the inertia term. This term is the tend of particles to keep their current path. 2)
Its best previous position obtained by the particle, itself in each iteration, which is called the
cognitive aspect of PSO. This term is the attraction of particles towards the previously found
personal best position. 3) The best position obtained by all particles in the whole swarm i.e.,
the best of personal best positions or the global best position, which is referred to as the social
aspect of PSO. This term is the attraction towards the global best position of whole swarm.

The particle positions adjust by the updating rule to explore the search space in order to find
the best global location. The equations of the updating rule for each particle in each dimension
presented by Shi and Eberhart [386] is given by

~vi(k + 1) = ω(k)~vi(k) + φp[rp(~Pi(k)− ~xi(k))] + φg[rg(~G(k)− ~xi(k))], (5.14)
~xi(k + 1) = ~xi(k) + ~vi(k + 1), (5.15)

where the vectors ~xi(k) and ~vi(k) represent the position and velocity of th i-th particle, re-
spectively, at the k-th iteration, with i = 1, 2, ..., N , where N is the size of the swarm, i.e.,
the number of individuals in the population. The vectors ~xi(k) and ~vi(k) are D-dimensional
vectors where D is the dimension of the swarm, i.e., the number of parameters being opti-
mized. Thus, ~xi(k) = [xi,1(k), xi,2(k), ..., xi,D(k)], and ~vi(k) = [vi,1(k), vi,2(k), ..., vi,D(k)], where
~xi, ~vi ∈ S ⊆ RD, and S denotes the feasible space. Moreover, ~Pi denotes the personal best
position found by particle i since initialization, and ~G is the global best position found in the
search space by whole swarm up to the current iteration (the best of the personal bests). The
parameter ω represents the inertia coefficient, whereas φp and φg indicate the cognitive and so-
cial acceleration coefficients, respectively. The parameters rp,g are uniformly distributed random
numbers in the range [0,1], i.e., rp,g ∈ U(0, 1).

Figure 1 shows the graphical search mechanism of the PSO algorithm in a two-dimensional
search space. The new position ~xi(k + 1) is the sum of current ~xi(k) position and the velocity
~vi(k + 1), where the new velocity ~vi(k + 1) is the sum of inertia, cognitive and social terms. It
should be noted that if the search space is defined by the bounds [~lb, ~up], then the value of ~xi
is clamped to the range [~xmin = ~lb, ~xmax = ~ub] to prevent those particles that might leave the
search space. The lower and upper boundaries of the search space are represented by ~lb and
~ub, respectively. Typically, the particles move back to the boundary value if they exceeded the
boundaries. In order to evaluate potential solutions, at each iteration, each candidate position is
evaluated by its value of objective function. Then, the personal and the global best positions are
updated by comparing their evaluated fitnesses against the previous ones. This process repeats
until a predefined acceptable fitness level is achieved or a maximum number of fitness evaluations
has been met. At this time, the last global best position found by the swarm returns as the global
optimum. The algorithmic description of PSO method is illustrated in Algorithm 5.2.
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Fig. 5.1. Graphical representation of updating rule in PSO algorithm. The position and velocity
of i-th particle in a swarm are adjusted by using the updating rule shown in Eqs. 5.14 and 5.15,
respectively.

The PSO algorithm uses a few tuning parameters that affect its performance. A large number
of studies have been invested to reveal the impact of the PSO parameters, namely the swarm
size N , the inertia weight ω, and the acceleration coefficients φp and φg on the algorithm per-
formance. According to several evidences, the PSO performance is sensitive to the values of
these parameters. In the following, we briefly explain how the parameters can affect the PSO
performance.

First, the number of particles in the swarm denoted byN heavily affects the convergence of the
algorithm. It is expected that increasing the number of particles decreases the number of required
iterations to converge, but an algorithm initialized by a large number of particles resembles a
random search and needs more function evaluations at each iteration. In contrast, using a smaller
number of particles requires more iterations to converge but fewer function evaluations. Since the
optimization cost is usually dominated by the fitness function evaluations, choosing a smaller
number of particles leads to a faster clock time. However, using too few of particles would
results in insufficient exploration of the search space. Empirical studies have recommended that
the swarm size should be larger than the dimensionality of the problem in order to avoid the
premature convergence of the particles towards a non-optimal point [397, 398]. The most efficient
reported values for the swarm size are between N = 20 to N = 300 particles [399].

The parameter ω (inertia coefficient) plays a crucial role in the PSO convergence. It has
been reported that without the inertia term, the velocity of particles quickly explode to large
values. Consequently, particles with large position updates would leave the search space bound-
aries [400, 401]. The inertia term was proposed by Shi and Eberhart to guarantee that the
particles converge to a stable point in the search space [386, 388]. Note that a proper value of
the parameter ω provides a balance between global exploration and local exploitation abilities.
Exploration is the tendency to test new regions in the search space. In contrast, exploitation is
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Algorithm 5.2 PSO algorithm

1. Initialize randomly the swarm; ~xi ∈ U(~lb, ~up), ~vi ∈ U(− | ~ub− ~lb |, | ~ub− ~lb |).
2. Set ~Pi = ~xi and identify ~G in the initial population.
3. while (k < max evaluations) or (best fitness > acceptable fitness) do
4. for i = 1 to N do
5. Adjust the position and velocity of the particles according to

~vi(k + 1) = ω(k)~vi(k) + φp[rp(~Pi(k)− ~xi(k))] + φg[rg(~G(k)− ~xi(k))],

~xi(k + 1) = ~xi(k) + ~vi(k + 1).

6. Evaluate the swarm.
7. if E(~xi(k + 1)) < E(~Pi(k + 1)) then
8. Update the personal best positions: ~Pi(k + 1) = ~xi(k + 1).
9. end if
10. if E(~P (k + 1)) < E( ~Gi(k + 1)) then
11. Update the global best position: ~G(k + 1) = ~Pi(k + 1).
12. end if
13. end for
14. end while

the tendency to more concentrate in small regions of the search space around promising candi-
date solutions. In general, the larger values of inertial coefficient facilitates global exploration
tendency of the swarm, whereas the smaller values promotes the local exploitation and result in
a faster convergence to a solution [402]. The inertia term can be chosen as a constant value or
as a linear decreasing function. It has been recommended to use the inertia weight as a linear
decreasing function. This choice improves the initial exploration of the search space during the
initial iterations whereas the exploitation is enhanced as the iteration count increases [386, 402].
In the present work, the inertia term is defined as a decreasing linear function of iteration index
k

ω(k) =
ωmin − ωmax

K
(k − 1) + ωmax for k = 1, 2, ...,K (5.16)

where K is the maximum number of iteration. The parameters ω1 and ω2 are

ωmax = 1− ε,
ωmin =

φp + φg
2

− 1 + ε,
(5.17)

with ε � 1. The parameters φp and φg are responsible for the swarm behavior referred to as
cognitive and social acceleration coefficients, respectively. These parameters control the cognitive
aspect (movement the particles toward the personal best) and social aspect (movement the
particles toward the global best position), respectively. The necessary and sufficient conditions
for stability of the swarm are [403, 404]

φp + φg < 4,
φp + φg

2
− 1 < ω < 1,

(5.18)
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in which, these conditions guarantee the convergence to a stable equilibrium, however it might
not be the global optimum [389, 403].

The reader is referred to Refs. [405, 406, 397] for a more detailed review of the PSO algorithm.

5.3.3 Differential evolution (DE)

Differential Evolution (DE) algorithm is a stochastic population-based optimization method
which was originally introduced by Storn and Price in 1996 [407]. Similar to PSO, the DE
algorithm belongs to the class of metaheuristic evolutionary algorithms. The DE maintains a
population of individuals which evolve based on biology-inspired operations. As with other EAs,
the algorithm does not require the gradient of the problem being optimized. Thus, it is not
necessary that the optimization function to be a differentiable function. Moreover, the simplic-
ity, fast convergence and using a few control parameters are the other important features of DE
algorithm.

In DE, as it is presented in Algorithm 5.3, first a population of S agents is generated with
uniformly distributed random positions which are constrained in the range [~lb, ~ub]. Then, a new
generation is created from the current generation by using a certain mutation and crossover
operations. At each iteration k, for each target agent ~xi ∈ [1, N ], three other agents ~ai, ~bi, and
~ci are choosed randomly, for which they must be distinct from each other as well as the target
agent ~xi. Then, a mutant agent is generated as ~yi(k + 1) = ~ai(k) + F (~bi(k)− ~ci(k)), where the
positive factor F ∈ [0, 2], known as the differential weight, is a control parameter for scaling
the difference vectors. After the mutation phase, the crossover operation is applied to each pair
of target agent ~xi and its mutant agent ~yi to generate a trial vector ~ui. For each dimension
j ∈ [1, D], the crossover is defined as

ui(k + 1, j) =

{
yi(k + 1, j) if (j = R) or (r < CR)
xi(k, j) else (5.19)

where user-specified constants CR ∈ [0, 1] is the crossover probability, and R ∈ [1, D] is a
randomly chosen index in the range [1, D], where D is the dimensionality of the problem, and
r ∈ U(0, 1) is a uniformly distributed random number in the range [0,1]. The mutation is
continued until D crossover have been made. In fact, the trial agent ~ui is the outcome of binary
crossover of target agent ~x with its mutant agent ~yi = ~ai +F (~bi− ~ci), by a crossover probability
of CR ∈ [0, 1]. Finally, the objective function values of the target and trial agents are evaluated
to perform the selection operation as follow

xi(k + 1, j) =

{
ui(k + 1, j) if E(~ui(k + 1)) < E(~xi(k))
xi(k, j) otherwise (5.20)

Thus, if the trial agent ~u has smaller objective function value than the corresponding target
agent ~x, the target agent ~x is replaced with the trial agent ~u, and it is admitted to enter the next
generation. The process repeats until a predefined termination condition has been met i.e., once
either a maximum number of iteration has been performed, or a sufficient fitness function has
been achieved. At each iteration and during each operation if an element of a vector is found to
exceed the the upper or lower limits it is reset to the violated boundary.

The DE algorithm has a few behavioral parameters which the choice of these parameters
can significantly influence the optimization performance [408, 409]. In the past decade, many
researchers have suggested various mutation and crossover strategies with different parameter
settings [410]. In this work, we use the introduced control parameters by Pedersen [399], which
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Algorithm 5.3 DE algorithm

1. Initialize randomly the swarm in the search space; ~xi ∈ U(~lb, ~up).
2. while (k < max evaluations) and (best fitness > acceptable fitness) do
3. for i = 1 to N do
4. For each target agent ~xi pick randomly three other distinct agents ~ai, ~bi and ~ci, and

generate a mutant agent ~yi(k + 1) = ~ai(k) + F (~bi(k)− ~ci(k)).
5. For each pair of ~xi and ~yi generate a trial vector ~ui.
6. Pick a random index R ∈ [1, D].
7. for j = 1 to D do
8. For each dimension j ∈ [1, D] pick a uniformly distributed random numbers r ∈

U(0, 1), and compute the j’th element of the trial vector ~ui.

ui(k + 1, j) =

{
yi(k + 1, j) if (j = R) or (r < CR)
xi(k, j) else

9. end for
10. Evaluate the trial agent ~ui;
11. if E(~ui(k + 1)) < E(~xi(k)) then
12. Update agent’s position: xi(k + 1, j) = ui(k + 1, j).
13. else
14. Keep the current state: xi(k + 1, j) = xi(k, j).
15. end if
16. end for
17. end while

have been obtained by the way of meta-optimization (the use of another overlying optimizer for
finding good behavioral parameters) and result in a satisfactory optimization performance for
various tested problems.

5.3.4 Metropolis-Hastings (MH)

In mathematical statistics, Monte Carlo Markov Chain (MCMC) algorithms are used for sampling
from a probability distribution to construct a Markov chain, whose steady state distribution
asymptotically approaches a desired distribution. In these algorithms, as the process of sampling
proceeds, the distribution of samples more closely approximates the distribution of interest.
The MCMC methods were primarily used for numerical calculating of the multi-dimensional
integrals, then they have been widely employed for calculating the expectation or expected values
of distributions. The term Markov chain refers to a sequence of stochastic states such that the
transitions from one state to another depends only on the current state of the chain, neither on
the previous nor the future states. An important property of Markov chains is that once the
chain reaches to its steady state, the starting state of the chain no longer affects the chain states.
In other words, the Markov chains converge to a stationary distribution independent of the
starting point. The transition probability in a Markov chain i.e., the probability associated with
state changes can be mathematically expressed as P (xt+1 | xt, xt−1, ..., x1) = P (xt+1 | xt), with
xt+1 = xt + εt, where εt ∈ N (0, 1). This kind of memorylessness aspect of stochastic processes is
called Markov property. A well-known Markov chain is the so-called random walk or drunkard’s
walk, which is a sequence of random steps in such a way that the transition probabilities depend
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solely on the current position.
In the following we will not explain the details of the MCMC methods, but we provide a

brief description of the most popular MCMC algorithms and its use in parameter estimation
problems. For more details of MCMC algorithms and related concepts see Refs. [411, 412]. In
the past years several MCMC methods have been developed to draw samples from a distribution.
However, the most commonly used MCMC method for obtaining a sequence of random samples
from a probability distribution is Metropolis-Hastings (MH) algorithm [413, 414], especially
when the number of dimensions is high. Since MH algorithm belongs to the class of MCMC
methods, the sequence of samples generated by MH has the Markov property, i.e., the next
sample value depends only on the current sample value. Consider we aim to compute the value
of a function f(x), which is proportional to the density of a desired stationary distribution
P (x), often referred to as the target distribution. In order to evaluate the target distribution
P (x), we need to construct a Markov chain with stationary distribution P (x). To this end, at
each iteration, a sample candidate is drawn from an arbitrary proposal distribution Q(. | xt),
which determines the next sample value based on the current sample value. In other word, a
trial transition to a candidate state x∗ is proposed randomly from the present state xt. Then,
the candidate sample is either accepted or rejected with some probability α. In MH algorithm

the acceptance probability is given by α = min{1, P (x∗)Q(xt | x∗)
P (xt)Q(x∗ | xt) }, where P (xt) describes the

probability of finding the system in state xt, and Q(x∗ | xt) denotes the probability of generating
the candidate state x∗ from the current state xt. If the candidate sample is accepted, it will be
used as the current sample in next iteration, i.e., the chain moves to the new proposed state.
Otherwise, the rejected candidate sample is discarded and the current sample is re-used again
for the next iteration until a candidate sample is accepted. In general, the proposal distribution
can be non-symmetric i.e., the probability of transition to a new state may not be identical with
the probability of reverse transition. However, in the widespread used Metropolis algorithm, a
symmetric distribution function is considered for the proposal distribution, which yields to the

simplified acceptance probability α = min{1, P (x∗)

P (xt)
}. For instance, it is common that in the

so-called Random walk Metropolis (REM) algorithm, a Gaussian function is considered as the
proposal distribution.

Here we illustrate how one can constructs a target distribution by using the Random walk
Metropolis (REM) algorithm. Figure 5.2 shows an example of producing a Cauchy target dis-
tribution with the probability density P (x) = 1./(1 + (x − 2)2, by sampling from a Gaussian
distribution. It is worth mentioning that in the MH method, we do not need to know the normal-
izing constant of the density or probability functions. In this example a single chain is generated

by 50000 sampling drawn from Q(x) =
1√
2πσ

exp

(
−1

2(
x− µ
σ

)2

)
, with σ = .5, as the proposal

distribution (c.f. panel A). Moreover, it can be observed in panel B that as more samples are
generated, the distribution of generated samples coincides better with the target distribution.

The most widely used application of MCMC techniques, in particular the MH algorithm,
is points sampling in Bayesian paradigm in order to create a Markov chain on search space
that approximates the posterior distribution. This sampling procedure results in the parameter
estimates that maximize the posterior probability of the parameters given the observed data.
The description of Bayesian inference is beyond the scope of the present work, for the details
see Ref. [415]. Here, we briefly sketch the MH algorithm in order to minimize a sum of square
error problem resulting in a single-point estimation, in contrast to maximizing the likelihood
function in Bayesian approach which is a distribution-based inference. However, it should be
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Fig. 5.2. Construction of a Cauchy target distribution P (x) = 1./(1 + (x− 2)2, using Random
walk Metropolis (REM) algorithm by sampling from a Gaussian distribution. (A) The sequence
of 50000 samples as a Markov chain. (B) The histograms of N samples with different chain
lengths, illustrated in blue bars. The red curves show the target distribution P (x), which has a
Cauchy shape with the mean centered at x0 = 2. The histogram of samples at N = 5000 is in
good agreement with the target distribution P (x).
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Algorithm 5.4 MH algorithm

1. Initialize with a state ~x in the search space; ~x ∈ U(~lb, ~up).
2. while (k < max evaluations)) do
3. Generate a new state ~y, randomly.
4. Evaluate ∆E = E(~y)− E(~x), and P = exp(−∆E).
5. Draw r ∈ U(0, 1) and compute a = min{1, P}.
6. if r ≤ a then
7. Accept the new state and set it as the current state in the next iteration: ~x(k+1) = ~y(k).
8. else
9. Reject the new state and maintain the current state: ~x(k + 1) = ~x(k).
10. end if
11. end while

mentioned that if we assume additive Gaussian noise on the measurements, maximizing the log
likelihood is equivalent to minimizing the sum of squared residuals between the model simulations
and the experimental data. It is well-know that by employing an analogy between the model
parameters and the states in a Markov chain, one can use the MH algorithm to minimize an
objective function. In this method, a random walk through the search space is constructed
which eventually converges towards a region of the state space where is the minimum of the
sum of squared errors. As the pseudo-code of MH method is illustrated in Algorithm 5.4, first
the algorithm starts with an initial state. Then, at each iteration, a trial move ~y is generated
randomly from the current state ~x. Due to the Markov property of the space exploration in MH
algorithm, whether a trial step will be selected or rejected depends only on the fitness function
values at current and the trial steps. This is in contrast to the PSO algorithm which a new
movement in the search space depends to the fitness function of all the previous steps. The trial
move is accepted with the probability P = exp(−∆E), where ∆E = E(~y)−E(~x). In other words,
the trial state is accepted if it has a objective function value less than current state. Otherwise,
it is accepted with probability of a ≥ r, where a = min{1, P}, and r ∈ U(0, 1) is a random
number drawn from a uniform distribution in the range [0, 1]. If the trial state is accepted, the
chain moves to new state and it will be used as the current state in the next iteration, whereas
the rejected trial state is discarded and the process repeats with another trial state until a trial
state is accepted.

5.3.5 Simulated Annealing (SA)

Simulated annealing (SA) is a generic probabilistic metaheuristic algorithm inspired by annealing
process in metallurgy. Annealing is a metallurgic technique which is used to increase the crystal
size of a metal with minimum defects by a procedure of heating, followed by slow cooling at a
specific rate. By this technique, the metal achieves its most regular possible lattice configuration
i.e., the ground state which has the minimum energy state. The SA method was introduced by
Scott Kirkpatrick, C. Daniel Gelatt and Mario P. Vecchi [416], from adapting the MH algorithm
under assuming an analogy between the solutions in optimization problems and the energy states
in thermodynamic theorem. By virtue of this analogy, the goodness of a solution in SA algorithm
is treated as the energy of a state in thermodynamic.

Although the SA method is quite robust for solving global optimization problems, it can be
very slow in optimizing those problems that the objective function is expensive to compute. This
is because the exploring of search space is accompanied by accepting a fraction of non-improving
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Algorithm 5.5 SA algorithm

1. Initialize with a state ~x in the search space; ~x ∈ U(~lb, ~up).
2. while (k < max evaluations) or (T < T0) do
3. Generate a new state ~y, randomly.
4. Evaluate ∆E = E(~y)− E(~x), and P = exp(−∆E

Tk
).

5. Draw r ∈ U(0, 1) and compute a = min{1, P}.
6. if r ≤ a then
7. Accept the new state and set it as the current state in the next iteration: ~x(k+1) = ~y(k).
8. else
9. Reject the new state and maintain the current state: ~x(k + 1) = ~x(k).
10. end if
11. Decrease Tk.
12. end while

solutions, which is a fundamental property of this method. Consider the current state of a system
denoted by ~x with the fitness function of E(~x) is updated to a candidate state ~y with the fitness
function value E(~y), through a random walk scheme. The new state is accepted if E(~x) < E(~y),
whereas if E(~x) > E(~y), the new state is accepted with some probability. If the new state is
accepted, it becomes as the current state and the process continues. Otherwise, if the new
state is rejected another state is generated from the current one. This step is repeated until the
system reaches a new acceptable state or a maximum number of iteration has been performed.
The probability of accepting new state based on the Boltzmann distribution is a = min{1, P},
where P = exp(−∆E

Tk
), and ∆E is the difference between the fitness value of new and current

states, and Tk is the temperature at iteration k. Once the acceptance probability is calculated,
it will be compared to a random number drown from a uniform distribution in the range [0,1],
i.e., r ∈ U(0, 1). If the acceptance probability is larger than the random number, the new state
is accepted, otherwise it is rejected. Compared to MH algorithm, in SA method the acceptance
probability is cooled slowly over time.

The notion of slow cooling inspired by annealing technique is implemented in SA method as
a slow decrease in the temperature. In general, the algorithm starts with a high temperature,
and then the temperature is reduced slowly according to a cooling schedule. Starting with a
high temperature leads to a high chance for accepting the worse solutions at the beginning of
the optimization procedure. This facilitates the global exploration ability of the algorithm in
order to avoid getting trapped by local optima early. As the temperature lowers, the acceptance
probability decreases, which enhances the local exploitation ability. In other words, the algorithm
concentrates on the most promising regions of the search space that may contain the optimum
solution. Since the annealing schedule i.e., the manner in which temperature is decreased plays
an essential role in the algorithm performance, many schedule has been suggested for decreasing
the temperature in SA algorithm. A simplest cooling schedule is reducing temperature linearly
or exponentially as the simulation proceeds. In this work, we consider the cooling schedule as a
function of iteration index k given by Tk = αTk−1, with α = 0.001(1.0/(M−1.0)), where M is the
maximum number of iterations. Taking this schedule, for the enough large value of maximum
iterations, for instance M = 1000, the temperature starts from T0 = 10 and gradually decreases
to zero.
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5.4 Precision of the estimates

Once the model’s parameters have been estimated, it is necessary to determine the identifiability
of the estimates. The identifiability analysis in general can be classified into two categories known
as structural identifiability (a priori identifiability) and practical identifiability (a posteriori iden-
tifiability) [59, 417]. The structural identifiability is related to the model structure only and is
independent of the quality and quantity of the measurements [418, 419]. Conversely, the practi-
cal identifiability is related to the experimental data and the noise measurements [420, 421, 422].
The practical identifiability analysis aims to determine whether the model’s parameters can be
uniquely estimated by the experimental data [421, 422, 423].

Although many technique have been developed to address the identifiability problems [424,
425, 418, 426, 427, 428, 429, 430, 431], analyzing the identifiability of parameters is still a very
challenging problem, particularly in the case of large and highly non-linear models [432, 433]. In
the following we describe the most widely used metrics for assessing the accuracy of estimates.

5.4.1 Confidence regions

Due to the noise in the measurements, the estimated parameters do not exactly coincide with
the true parameter values. Therefore, there is a discrepancy between the true and the estimated
values, which needs to be evaluated. A widely used method in statistical inference to assess
the accuracy of the estimated parameters is constructing the confidence regions [434, 435]. A
confidence region with the confidence level of (1−α)% is a region around the estimated parameter
in which contains the true parameter with a probability of (1 − α). Since in linear models the
sum of squares function is quadratic, the confidence regions for linear problems with Gaussian
noise can be obtained exactly as the following ellipsoid [342]

(p∗ − p)>C−1
lin (p∗ − p) ≤ NpF1−α

NP ,Ny−Np , (5.21)

which is centered at estimated parameter p∗ with principal axes directed along the eigenvectors
of C−1

lin , where Clin denotes the covariance matrix of the linear model, F is the Fisher distribution
with Np and Ny − Np degree of freedom, Np and Ny are the number of model parameters and
the total number of data points, respectively, 1− α indicates the confidence level, and the high
index > represents the transposed vector or matrix.

In contrast, in nonlinear models there is no exact theory for the evaluation of confidence
regions [436, 54]. However, one can approximate the covariance matrix to extend Eq. (5.21) for
nonlinear models leading to the following ellipsoid [437, 343]

(p∗ − p)>C−1
approx(p∗ − p) ≤ NpF1−α

NP ,Ny−Np , (5.22)

where Capprox is an approximation of covariance matrix and it can be computed either the Fisher
information matrix (represented by CJ), or by the Hessian matrix (represented by CH) [436, 64].
Using Fisher matrix, the approximate covariance matrix is given by [438, 439, 440]

CJ = s2
(
J(p)>WJ(p)

)−1
, (5.23)

where s2 =
E(p̂)

Ny −Np
is an unbiased approximation of the measurement variance, J(p) =

∂Ŷ (Xdata,p)

∂p
|p∗ is an Ny × Np matrix indicating the Jacobian matrix evaluated at p∗, and
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W is a weighting diagonal matrix with elements w2
ii = 1/σ2

ii in the principal diagonal. Conse-
quently, by substituting Eq. (5.23) into Eq. (5.22), the confidence region obtained with Fisher
matrix reads

(p∗ − p)>
(
J(p)>WJ(p)

)
(p∗ − p) ≤ Np

E(p∗)

Ny −Np
F1−α
NP ,Ny−Np . (5.24)

In another approach, the approximate covariance matrix can be derived from the curvature of
objective function through the Hessian matrix [436]

CH = 2s2H(p)−1, (5.25)

where H(p) =
∂2E(p)

∂p∂p>
|p∗ , i.e. the Hessian matrix depends on the shape of objective function.

Therefore, the confidence region based on Hessian matrix reads

(p∗ − p)>H(Xdata,p)(p∗ − p) ≤ 2Np
E(p∗)

Ny −Np
F1−α
NP ,Ny−Np . (5.26)

It has been shown that the estimation accuracy can be evaluated by comparing confidence
regions obtained with the Hessian and the Fisher methods [436]. If both approaches yield the
same confidence ellipsoids, the estimation converges to the true parameters. Otherwise, any
discrepancy between them indicates an inaccurate estimation [436, 64].

Another way of constructing the confidence regions in non-linear models is known as the
likelihood method. In this approach, an approximate confidence region is defined as all the
parameter sets which satisfy [441]

E(p) ≤ E(p∗)

(
1 +

Np

Ny −Np
F1−α
NP ,Ny−Np

)
. (5.27)

In general, the confidence regions constructed by this approach do not have to be elliptical.
Furthermore, since the Eq. (5.27) does not depend on the linearization, the confidence regions
obtained through the likelihood method are more precise than those computed through the
approximate covariance matrix [442]. However, generating likelihood-based confidence regions
requires a large number of function evaluations, which can be computationally expensive. Despite
this fact, since minimizing an objective function with metaheuristic optimization algorithms like
PSO is performed through function evaluations, using them is a well suitable way to obtain the
likelihood confidence regions [443, 442]. In this work, we use PSO algorithm to compute the
likelihood confidence regions which will be compared with those obtained through the covariance
approximation.

5.4.2 Correlation analysis

Correlation matrix measures the possible interrelationship among the model parameters, which
can be obtained from the covariance matrix. The correlation coefficient between the i-th and
j-th parameter which can only take values between −1 and +1 is defined by [64, 54]

Rij =
Cij√
CiiCjj

, i 6= j ,

Rij = 1, i = j ,
(5.28)
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where Cij is the covariance between the i-th and j-th parameter estimates. The correlation
coefficient between two parameters indicates how the modification of model output due to the
changes in one parameter can be taken place by proper changes in the other parameter [55].

It is important to notice that the correlation among parameters leads to non-identifiability
problems [444, 64, 54]. The highly correlated parameters are not identifiable, because the in-
fluence of small changes in one parameter on the model output can be compensated by an
appropriate change in the other parameter.

5.4.3 Sensitivity analysis

Sensitivity analysis is an appropriate way to identify which model parameters mostly contribute
to variations in model output due to the changes in model input [445, 446]. Therefore, this
method allows us to determine which model parameters are the key factors in controlling system
behaviors [445]. A local sensitivity coefficient measures the influence of small changes in one
model parameter on the model output, while the other parameters are held constant [447, 445,
446]. The Ny ×Np local sensitivity matrix is defined as the first-order partial derivatives of the
model function with respect to each model parameter [448, 449]

Si,j =
∂Ŷi(Xdata,p)

∂pj
|p∗ , (5.29)

where i ∈ {1, 2, ..., Ny} and j ∈ {1, 2, ..., Np}. Since Eq. (5.29) involves the use of Jacobian
matrix, the local sensitivity coefficients can be defined by [448, 55]

Γ(pj) = D(J(p)>WJ(p)), (5.30)

where D denotes the main diagonal elements of a matrix. In addition, the local sensitivity matrix
can be determined by computing the curvature of objective function through the Hessian matrix
(second-order derivative) [346]

Λ(pj) = D(
∂2E(p)

∂p∂p>
|p∗). (5.31)

The sensitivity analysis can shed light on the identifiability of model parameters. Making a
small change in a very sensitive model parameter causes a strong response in the model output,
which indicates that the parameter is more identifiable. On the contrary, a model parameter
with low sensitivity is more difficult to being identified, because any modification in insensitive
parameters has no influence on the model output [55]. The sensitivity analysis can be also a
useful tool for model reduction techniques. For instance, a model can be simplified by either
omitting the insensitive parameters or by fixing their values at some constants based on prior
knowledge about the system dynamics [445, 421].
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5.5 Case Studies

First, in order to illustrate the performance and capability of the parameter estimation method
carried out in this work, we estimate the model parameters of two case studies; Case Study I) a
stochastic damped harmonic oscillator, and Case Study II) a stochastic linear delay differential
equation. For each case study we have generated in silico spectral data by a pseudo-experimental
process, i.e., the spectral power data is generated artificially by adding noise to the output ob-
tained by simulating the model equations with a set of pre-chosen parameters referred to as the
true, or nominal values. Then, the confidence regions constructed by the approximate covari-
ance matrix are compared with the likelihood confidence regions obtained by PSO algorithm.
Moreover, identifiability analysis is performed through the sensitivity and correlation analyses
for both case studies I and II to evaluate the reliability and accuracy of the estimates. Finally, we
compare the performance of different optimization algorithms to determine which algorithm is
more suitable for the in vivo parameter estimation problem considered in this work; Case Study
III) estimating the unknown parameters of a thalamo-ocortical model by fitting the model power
spectrum to the EEG spectral power recorded during awake and anesthesia conditions. All the
computations in the present work were implemented in Matlab (http://www.mathworks.com)
on a Mac OS X machine with 2.5 GHz Intel Core i5 processor and 12 GB of 1333 MHz DDR3
memory. The source codes needed to reproduce the presented results are available from the
author on the request.

5.5.1 Case Study I: A stochastic damped harmonic oscillator

In Case Study I, we aim to estimate three unknown parameters of a noisy damped harmonic os-
cillator. The mathematical model of a damped harmonic oscillator driven by a random stochastic
force can be formulated as [121]

d2x

dt2
+ γ

dx

dt
+ ω2

0x = ξ(t), (5.32)

where ω0 is the intrinsic angular frequency of the oscillator, and γ denotes the damping coefficient.
The additive Gaussian white noise is represented by ξ(t), which obeys

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2κδ(t− t′), (5.33)

where κ is the intensity of the uncorrelated driving noise, and 〈.〉 denotes the ensemble av-
erage [122, 123]. Using the Wiener-Khinchin theorem, the power spectrum of the stochastic
differential equation given by Eq. (5.32) reads [124, 125]

P (ω) =
2κ√
2π

1

(ω2 − ω2
0)2 + γ2ω2

, (5.34)

where ω = 2πf denotes the angular frequency. It can be shown that the only maximum of P (ω)
is located at ωmax =

√
ω2

0 − γ2/2, where ω0 = 2πf0 is the resonant angular frequency of the
system c.f. Fig. 2.1 of chapter 2. In this case study, the vector of unknown parameters to be
estimated is pI = (κ, γ, f0), where all the parameters can only be greater than zero.

5.5.2 Case Study II: A stochastic linear delay differential equation

The considered inverse problem in Case Study II is to identify the unknown parameters of a
linear delay differential equation which is driven by additive Gaussian white noise. Consider a
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Fig. 5.3. Schematic diagram of the thalamo-cortical system. The excitatory connections (glu-
tamatergic) are indicated with blue arrows, while the inhibitory connections (GABAergic) are
represented by red lines with filled circle ends. The connections between cortical pyramidal neu-
rons (E) and the thalamus consisting of thalamo-cortical relay neurons (S) and thalamic reticular
nucleus (R) are associated with a constant time delay τ .

linear scalar delay differential equation in the presence of additive white noise given by

dy(t)

dt
= ay(t) + by(t− τ) + ξ(t). (5.35)

The power spectrum of this equation is defined by the following equation

P (ω) =
2κ√
2π

1

(a+ b cos(ωτ))2 + (ω + b sin(ωτ))2
, (5.36)

where κ is the intensity of the additive white noise with a Gaussian distribution represented by
ξ(t). In this case study the vector of unknown parameters to be estimated is pII = (κ, a, b, τ),
where κ > 0, τ > 0, and a, b ∈ R.

5.5.3 Case Study III: A thalamo-cortical model reproducing the EEG rhythms

Case Study III aims to estimate the parameters of a neural mass model by fitting the power spec-
trum of the system to the recorded EEG data during awake and anesthesia conditions. To this
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end, we consider a well-tried thalamo-cortical neuronal population model developed by Robinson
et al. [173, 174, 23], which is able to reproduce the characteristic spectral changes in EEG rhythms
observed experimentally during different behavioral states such as wakefulness, slow-wave sleep,
seizure and anesthesia conditions [186, 29, 176, 35, 36, 37]. In the following, the model equations
is represented and then we derive the formula for EEG power spectrum which will be fitted to
the empirical spectra. Consider the thalamo-cortical system shown schematically in Fig. 5.3.
The model consists of a network of three populations of neurons: cortical pyramidal neurons
(E), thalamo-cortical relay neurons (S) which both are excitatory glutamatergic neurons, and
thalamic reticular nucleus (R) which is a thin shell of GABAergic cells surrounding the thalamus.
The cortical pyramidal neurons (E) receive excitatory input from thalamo-cortical relay neurons
(S) and project back to the same nuclei. This reciprocal long-range excitatory interaction would
generates a positive feedback which is associated with a conduction delay τ . However, the in-
cessant excitation in this loop is prevented by the interposed inhibition to thalamo-cortical relay
neurons (S) which originates from thalamic reticular nucleus (R). The thalamic reticular nucleus
(R) receive excitatory input from axon collaterals of the cortical pyramidal neurons (E) and
thalamo-cortical relay neurons (S), which the former input is associated with a constant time
delay τ [29, 229].

We denote the excitatory and inhibitory postsynaptic potentials (PSPs) in the model’s neu-
ronal populations by V c

a , where a ∈ {E,R, S} represents the pyramidal (E), relay (S), and retic-
ular (R) neurons, respectively, and c ∈ {e, i} indicates the excitatory and inhibitory synapses,
respectively. The system dynamics are governed by the following set of coupled delay differential
equations

L̂eV
e
E(t) = KESSS [V e

S (t− τ)− V i
S(t− τ)],

L̂eV
e
S (t) = KSESE [V e

E(t− τ)] + I(t),

L̂iV
i
S(t) = KSRSR[V e

R(t)],

L̂eV
e
R(t) = KRESE [V e

E(t− τ)] +KRSSS [V e
S (t)− V i

S(t)],

(5.37)

where the parameters Kab are the synaptic connection strengths in population a originating
from population b and τ is the transmission time delay between cortex and thalamus. According
to previous studies, we assume that the EEG can be described in a good approximation by
spatially constant neural population activity [29, 23, 35, 36]. Thus, under the assumption of the
spatial homogeneity, mean post-synaptic potentials in above equations do not depend on spatial
locations. The parameters Sa[.] describe the mean firing rate functions for neuronal populations
a ∈ {E,R, S}, in which they are generally considered as a standard sigmoid function

Sa(V ) =
Smaxa

1 + e−c(V−V tha )
, (5.38)

where Smaxa is the maximum firing rate of population a, V th
a indicates the mean firing threshold,

and c denotes the slope of the sigmoid function at the inflexion-point V th. The temporal operators
L̂e,i are given by

L̂e(∂/∂t) =
1

αeβe

∂2

∂t2
+ (

1

αe
+

1

βe
)
∂

∂t
+ 1,

L̂i(∂/∂t) =
1

αiβi

∂2

∂t2
+ (

1

αi
+

1

βi
)
∂

∂t
+ 1.

(5.39)

with αe > βe, and αi > βi, where αe and αi indicate the synaptic rise rates of the response
functions for excitatory and inhibitory synapses in s−1, respectively, and βe and βi denote the
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corresponding decay rate constants. Moreover, the delay term, τ , is zero if both the sending
and receiving populations are in the thalamus while for the thalamo-cortical or cortico-thalamic
pathways, the delay term is nonzero.

Finally, since we assume that the EEG is generated by the activity of pyramidal cortical
cells [22, 29, 30, 173, 182], and by virtue of the specific choice of external input to relay neurons,
the power spectrum of the EEG just depends on one matrix component of the Green’s function
by

PE(ω) = 2κ
√

2π
∣∣∣G̃1,2(ω)

∣∣∣2 , (5.40)

where

G̃1,2(ω) =
−K1L̂ie

−iωτ

L̂e(L̂eL̂i + C2) + e−2iωτ (C3 − C1L̂i)
, (5.41)

with C1 = K1K2, C2 = K3K5 and C3 = K1K3K4, and

L̂e =

(
1 +

iω

αe

)(
1 +

iω

βe

)
, L̂i =

(
1 +

iω

αe

)(
1 +

iω

βe

)
,

K1 = KES
dSS [V ]

dV
|V=(V ∗e

S −V ∗i
S ), K2 = KSE

dSE [V ]

dV
|V=V ∗e

E
,

K3 = KSR
dSR[V ]

dV
|V=V ∗e

R
, K4 = KRE

dSE [V ]

dV
|V=V ∗e

E
,

K5 = KRS
dSS [V ]

dV
|V=(V ∗e

S −V ∗i
S ) .

In the following, in a reasonable approximation we assume an instantaneous rise of the
synaptic response function followed by an exponential decay i.e., αe � βe, and αi � βi. This
approximation reduces the second-order temporal operators L̂e,i given by Eq. (5.39) to the first-
order operators L̂e = 1 + iω/βe, and L̂i = 1 + iω/βi. Using this approximation, the sixth-order
characteristic equation (the denominator of G̃1,2 given by Eq. (5.41)) simplifies to a third-order
equation, which is more analytically tractable. It can be shown that this simplification does not
affect the spectral power in the delta and alpha ranges. Moreover, it is widely accepted that
anesthetic agent propofol prolongs the temporal decay phase of inhibitory synapses while the
rise rates remain unaffected [28, 35].

Taken together, by fitting the power spectrum of EEG given by Eq. (5.40) to the empirical
spectra, we are able to estimate seven model parameters, namely, the power normalization D =√

2κK1, excitatory and inhibitory synaptic decay rates βe, and βi, axonal propagation delay τ ,
and the total loop gains C1, C2, and C3. Therefore, in this case study the vector of unknown
parameters to be estimated is pIII = (D, τ, βe, βi, C1, C2, C3), where based on the physiological
limits, all the parameters are restricted to be positive. Furthermore, the response functions for
the inhibitory synapses exhibit a longer characteristic rise and decay time constants than the
excitatory synapses, thus αe > αi, and βe > βi (Constraint I).

In the following, we derive more analytical conditions for the stability of the system which
will be imposed over the chi-squared error function in spectral fitting problem. To this end, we
employ the method described in Theorem 1 of chapter 2. We first probe the conditions for the
stability of the system in the absence of time delay i.e., τ = 0. Then, by increasing the delay value
we investigate about whether or not there exists a critical delay for which the system becomes
unstable. Since the power spectrum analysis is valid only if the resting state of the system is
stable, we seek the conditions which guarantee that there exists no critical value for the time
delay, i.e., the introduction of delay does not yield any bifurcation, thus the system remains

104



5.5. Case Studies

stable. Now consider the denominator of the Fourier transform of the Green’s function given by
Eq. (5.41), which can be written in the following general form of transcendental equations

P (λ) + e−λτQ(λ) = 0, (5.42)

where P (λ) and Q(λ) are polynomial in λ = iω, given by

P (λ) = a3λ
3 + a2λ

2 + a1λ+ a0, (5.43)
Q(λ) = b2λ

2 + b1λ+ b0, (5.44)

with

a3 =
1

β2
eβi

, a2 =
2

βeβi
+

1

β2
e

,

a1 =
C2 + 2

βe
+

1

βi
, a0 = 1 + C2 ,

b2 = 0 , b1 = −C1

βi
,

b0 = C3 − C1 .

In the absence of delay (τ = 0), the characteristic equation described by Eq. (5.42) recast to
the following polynomial

a3λ
3 + a2λ

2 + (a1 + b1)λ+ (a0 + b0) = 0. (5.45)

By Routh-Hurwitz conditions, this polynomial is stable if and only if

a3 > 0 , a2 > 0 , a1 + b1 > 0 , a0 + b0 > 0 , a2(a1 + b1)− a3(a0 + b0) > 0 .

Thus, the non trivial conditions for the stability of the system in the absence of delay are

βi(C2 + 2) + βe(1− C1) > 0, (5.46)
C3 + C2 − C1 + 1 > 0, (5.47)

(2βe + βi)

(
C2 + 2

βe
+

1− C1

βi

)
− (C3 + C2 − C1 + 1) > 0. (5.48)

Moreover, according to the Theorem 1 described in chapter 2, by squaring and summing the the
real and imaginary parts of the polynomials P (λ) and Q(λ) while the exponential is defined in
terms of trigonometric functions, one obtains

a2
3Ω3 + (a2

2 − 2a3a1)Ω2 + (a2
1 − 2a2a0 − b21)Ω + (a2

0 − b20) = 0, (5.49)

where Ω = ω2. Since a3 > 0,

P(Ω) = Ω3 + ξ2Ω2 + ξ1Ω + ξ0, (5.50)

where

ξ2 =
a2

2 − 2a3a1

a2
3

= (2βe + βi)
2 − 2

(
β2

2 + βeβi(C2 + 2)
)
,

ξ1 =
a2

1 − 2a2a0 − b21
a2

3

=
(
β2
e + βeβi(C2 + 2)

)2 − 2β2
eβi(2βe + βi)(C2 + 1)− β2

eC
2
1 ,

ξ0 =
a2

0 − b20
a2

3

= (β2
eβi)

2
(
(C2 + 1)2 − (C3 − C1)2

)
.

105



Chapter 5. Spectral power fitting using stochastic optimization algorithms

Now we seek the conditions under which the polynomial P(Ω) has no positive real root.
In a simplest way, if all the coefficients of a polynomial are positive, the polynomial can not
have any positive real roots. In this situation, if the discriminant of the above polynomial i.e.,
∆ = 18ξ2ξ1ξ0 − 4ξ3

2ξ0 + ξ2
2ξ

2
1 − 4ξ3

1 − 27ξ2
0 will be zero or positive (∆ ≥ 0), all the three roots

are real and negative. In another situation, the above polynomial can have one negative real
root and two complex conjugate roots. By Descartes’ rule of signs, it can be shown that if the
lead coefficient of a third order polynomial is positive, one negative real root is guaranteed if
and only if the constant coefficient is positive. Moreover, if the discriminant ∆ < 0, then the
polynomial has one real root and two complex conjugate roots. Thus, ∆ < 0, and ξ0 > 0,
guarantee that we have one negative real root and two complex roots i.e., P(Ω) has no any
positive real roots. In summary, the following conditions gurantee that the the denominator of
the Fourier transform of the Green’s function given by Eq. (5.41) is stable in the absence of the
delay, and the introduction of a time delay can not cause a bifurcation i.e., for τ ≥ 0 the reduced
thalamo-cortical model exhibits stable oscillations:

βi(C2 + 2) + βe(1− C1) > 0, (Condition II)

C3 + C2 − C1 + 1 > 0, (Condition III)

(2βe + βi)

(
C2 + 2

βe
+

1− C1

βi

)
− (C3 + C2 − C1 + 1) > 0, (Condition IV)

(β2
eβi)

2
(
(C2 + 1)2 − (C3 − C1)2

)
> 0, (Condition V)

∆ < 0, or if ∆ ≥ 0 then ξ1, ξ2 > 0, (Condition VI)
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5.6 Results of the parameter estimation in Case Studies I, II, and
III

In this section, we show how given a set of ODEs or DDEs subjected to the additive noise, one
can estimate the unknown model’s parameters. Due to the lack of experimental data, we first
consider the parameter estimation problem designed with artificial data set in two case studies:
Case Study I) a noisy damped harmonic oscillator (governed by a second order ODE). Case Study
II) a stochastic linear delay differential equation (governed by a first order DDE). Starting from
known parameter values allows us to asses the performance of different optimization algorithms
in different estimation problems. Then, the tested estimation method is applied to the real
experimental data set to estimate the parameters of a thalamo-cortical model described in Case
Study III.

For Case Studies I and II, the power spectrum of the model is computed by substituting a
set of nominal parameters into the model equations. Then, in order to generate a set of pseudo-
experimental data, a zero mean Gaussian white noise with the standard deviation of σ, is added
to the simulated noise-free data. Mathematically, the generated in silico data can be expressed
as [336]

Ψ = Φ + σr (5.51)

where Φ and Ψ denote the simulated noise-free data and the corresponding noisy data, respec-
tively. The parameter r is a pseudo-random value drawn from standard Gaussian distribution
(with zero mean and unit variance), which can be generated by MATLAB command randn. In
the present work, the standard deviation of additive Gaussian white noise is set to σ = 0.2.

107



Chapter 5. Spectral power fitting using stochastic optimization algorithms

0 2 4 6 8 10 12 14
−20

−18

−16

−14

−12

−10

−8

Frequency(Hz)

lo
g
(p

o
w
er

sp
ec
tr
u
m

(a
.u
.)
)

95% Confidence interval

Measured Signal

True Signal

 Estimated Signal

Figure 5.4. Estimating the parameters of a stochastic damped harmonic oscillator (Case Study
I) from a set of noisy in silico data. Shown are the constructed power spectrum (estimated
signal) versus the noise-free (true signal) and the noisy spectra (measured signal), encoded in
dashed green, solid blue, and dashed red lines, respectively. In addition, the grey shaded area
represents the 95% confidence interval. The true and estimated parameters are p∗I = (κ, γ, f0) =
(0.103 mV, 4.562 Hz, 3.00 Hz), and p∗I = (κ, γ, f0) = (0.103 mV, 4.562 Hz, 3.00 Hz), respectively.

Case Study I deals with estimating the parameters of a stochastic damped harmonic oscillator
by fitting the model’s spectrum to a set of pseudo-experimental data. This estimation is shown
in Fig. 5.4. In this figure, the estimated power spectrum (estimated signal) obtained by PSO
algorithm is compared with the respective noise-free (true signal) and the noisy (measured signal)
spectra. From the result, we observe that the estimated power spectrum is in very good agreement
with the measured signal. The noise-free power spectrum was generated according to Eq. (5.34)
with the true parameters pI = (κ, γ, f0) = (0.1 mV, 5 Hz, 3 Hz). White Gaussian noise with
the standard deviation of σ = 0.2 was added to the true signal to generate the measured signal.
Fitting this noisy data with PSO algorithm results in the estimated parameters p∗I = (κ, γ, f0) =
(0.103 mV, 4.562 Hz, 3.00 Hz), which are very close to the true parameters pI . The estimated
parameters p∗I yield the best-fit value of E(p∗I ) = 0.6554.

Furthermore, the residuals between the measured and the simulated data in this case study
are shown in Fig. 5.5. It can be seen that the residuals are uncorrelated. The lack of correla-
tion between the residuals confirms that the estimation converges to the true parameters with
sufficient accuracy.

It is worth pointing out that in this case study, by other optimization algorithms such as LM,
DE, MH, and SA, we can obtain a similar estimation (not shown).
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Figure 5.5. Residuals as a function of number iterations for Case Study I; power spectral fitting
of a stochastic damped harmonic oscillator to a set of pseudo-experimental data.

Once the model parameters have been inferred, one can determine the uncertainties in the
parameter estimations. Here, in order to check the accuracy of the estimation shown in Fig.
5.4, we plot the confidence regions of the calibrated parameters. Figure 5.6 illustrates the 95%
elliptical and likelihood confidence regions for different pairs of parameter estimates in Case
Study I. The elliptical confidence regions are obtained through the covariance matrix estimation,
whereas the likelihood confidence regions are produced by PSO algorithm. In this case study,
since J(p∗)>WJ(p∗) = 2H(p∗), we observe that the covariance matrix approximated by Fisher
Information Matrix (c.f. Eq. (5.24)) and Hessian matrix (c.f. Eq. (5.26)) are equal, which
yields exactly the same elliptical confidence regions. Considering the conceptual difference of
Hessian and FIM approaches in the derivative terms [436], the exact coincidence of the ellipsoids
obtained by Hessian and FIM methods confirms that the accuracy in parameter estimations are
well captured. Moreover, by comparing the likelihood confidence regions calculated via the PSO
procedure (c.f. Eq. (5.27)) with the elliptical confidence regions, it is very clear that satisfied
solutions can be obtained by using the PSO algorithm.
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Figure 5.6. Comparison of 95% elliptical and likelihood confidence regions for different pairs
of parameter estimates in Case Study I. The ellipsoids encoded in dashed red and green lines
show the confidence regions obtained by approximating the covariance matrix through FIM and
Hessian approaches, respectively. The regions constructed by the blue markers indicate the
likelihood confidence regions produced by the PSO algorithm. The regions are centered at the
optimal parameters p∗I = (κ, γ, f0) = (0.103 mV, 4.562 Hz, 3.00 Hz), which are illustrated by the
filled red circles.

It was mentioned before that the parameter exploration in PSO algorithm is completely
different with MH and SA algorithms (c.f. Sections 5.3.2, 5.3.4, and 5.3.5). Here we present
a visual comparison of the way that parameters are estimated in these algorithms. In PSO,
a population of particles evolves in the search space by cooperation and competition among
themselves to find the global minimum. In this algorithm, the next position of each particle
depends on its previous positions, as well as the positions of all the other particles. Figure
5.7 shows how the search space is explored in PSO algorithm by a swarm of 100 particles, i.e.,
with the swarm size of S = 100. It can be seen that initially the particles (blue markers) are
uniformly distributed in the search space. Then, after a sufficient number of iterations, all the
particles converge to the global minimum by attraction towards the global best position (red
lines). It should be noted that the trajectory of the particles, at each iteration, determined
by the combination of inertia (its previous position), cognitive (the best personal position) and
social (the global best position) components not only one of them.

In the case of MH and SA algorithms, the search space is explored by Markov chains in such
a way that the next step of the chains depends only on the current state of the chains. The
trajectory of Markov chains constructed by MH and SA methods are plotted in Fig. 5.8. We
observe that using MH (panel A), after a short transition, the chains oscillate around the true
parameter values, whereas the chains constructed by SA (panel B) show fluctuations only at the
beginning, since the algorithm was initiated with a high temperature value. As the temperature
is reduced to zero, according the cooling schedule, the chains converge to the true parameter
values with quickly decreasing the amplitude of chain oscillations.
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Figure 5.7. Trajectory of the particles in PSO algorithm used for estimating the parameters
of a stochastic damped harmonic oscillator (Case Study I). The blue markers show the positions
of different particles in the swarm, which converge to the trajectory of the global best particles
illustrated in red lines.
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Figure 5.8. Evolution of Markov chains in the power spectral fitting of a stochastic damped
harmonic oscillator (Case Study I) to a set of in silico data. The chains in panels (A) and (B) are
obtained by MH and SA algorithms, respectively. The values of true parameters are illustrated
in the red lines.
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Figure 5.9. Correlation matrix in Case Study I; power spectral fitting of a stochastic damped
harmonic oscillator to a set of pseudo-experimental data. The estimated parameters are κ, γ,
and f0.

An easy way to study the practical identifiability of an estimation is to plot the correlation
matrix of the model parameters. Here, the local identifiability of the obtained estimations is
evaluated based on the correlation analysis. Figure 5.9 displays the color plot of the correlation
matrix according to Eq. (5.28), for Case Study I. In this figure, it can be observed that there is no
element equals to ±1 out of the diagonal. The lack of correlation among the estimated parameters
indicates that all the parameters are identifiable. Furthermore, the Fisher Information Matrix
(FIM) is not singular for this estimation. These results indicate that the estimated parameters
in this case study are captured adequately accurate.
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Since the sensitivity analysis is a key tool of the local identifiability procedures, here, it is
performed to evaluate the obtained estimations. In order to visualize the influence of a small
parameter change on the model output we can plot the fitness function with respect to the model
parameters over a range of values. Figure 5.10 illustrates the results of sensitivity analysis in Case
Study I. In panels A, B, and C, the fitness function is plotted versus each model parameter,
while other parameters are fixed at their nominal values p∗I . It can be observe that for each
parameter, the estimated values given by p∗I = (κ, γ, f0) = (0.103 mV, 4.562 Hz, 3.00 Hz) are
located at the minima of the fitness function (see the red squares). In addition, the sensitivity of
the model measured through the Hessian matrix defined by Eq. (5.29) is shown in panel D. From
this figure we can observe that the fitness function in panel A exhibits sharper valley around the
optimal values compare to the others. This indicates that the fitness function in this case study
is much more sensitive to the parameter κ than to the other parameters, in consistence with the
sensitivity indices shown in panel D. In contrast, a very flat valley is observed in the region
of parameter space near the minimum in panel B, which indicates a very low sensitivity to the
the parameter γ, as illustrated in panel D. It is also worth mentioning that since in this case
study J(p∗)>WJ(p∗) = 2H(p∗), the sensitivity of the fitness function to the model parameters
measured by Jacobian matrix given by Eq. (5.30) are qualitatively identical with those obtained
through the Hessian Matrix (more precisely, Γ(pj) = 2Λ(pj)).

In Fig. 5.11, the inverse of fitness function normalized by its values at the estimates i.e.,
1

E(p)/E(p∗)
is plotted for each model parameter (blue curves), while the other parameters are

fixed at their estimated values p∗I . Since the minimum of fitness function for each model pa-
rameter is located at the estimated parameters p∗I , the normalized functions exhibit a maximum
at the optimal values (see the filled green circles). In panels A, B, and C, each normalized
fitness function is fitted with a Gaussian distribution (encoded in dashed red lines) with the
mean value at the optimal values p∗I , and unknown standard deviation of σ. Then, to compare
the sensitivity of the fitness function to the model parameters, the estimated standard deviations
of the fitted distributions i.e., σκ, σγ , and σf0 are illustrated in panel D. It can be seen that, in
consistence with the results shown in Fig. 5.10, the fitness function reveals a high sensitivity to
the parameter κ compare to the other parameters, whereas it is less sensitive to the parameter
γ than to the others.

113



Chapter 5. Spectral power fitting using stochastic optimization algorithms

0 5 10
0

50

100

κ

F
.F

0 5 10
0

50

100

γ

F
.F

0 5 10
0

50

100

f0

F
.F

0

50

100

κ γ f0

S
e
n
s
iv
it
y

C

BA

D

Figure 5.10. Sensitivity analysis in Case Study I; power spectral fitting of a stochastic damped
harmonic oscillator to a set of in silico data. Panels (A), (B), and (C) show the plotted fitness
function versus the model parameters κ, γ, and f0, respectively. The red squares indicate the
values of the estimated parameters p∗I = (κ, γ, f0) = (0.103 mV, 4.562 Hz, 3.00 Hz). Panel D
illustrates the sensitivity of the fitness function to the model parameters measured through the
Hessian matrix according to Eq. (5.29).
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Figure 5.11. Sensitivity analysis measured through the fitting of a Gaussian distribution to
the normalized fitness function, in Case Study I. In panels (A), (B), and (C) the blue lines

show the normalized fitness function defined by
1

E(p)/E(p∗)
versus the model parameters κ, γ,

and f0, respectively. The filled green circles illustrate the values of the estimated parameters
p∗I = (κ, γ, f0) = (0.103 mV, 4.562 Hz, 3.00 Hz). In each panel, a Gaussian distribution with
the mean value at p∗I , and an unknown standard deviation of σ is fitted to the normalized
fitness function (dashed red lines). (D) The estimated standard deviations of the fitted Gaussian
distributions i.e., σκ, σγ , and σf0 .
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Figure 5.12. Convergence curves of several optimization algorithms used in Case Study I.
The values of fitness function versus the number of iterations in a log-log scale, for different
optimization algorithms namely LM, PSO, DE, MH, and SA are shown in green, thick gray,
black, blue and red lines, respectively.

Here, in order to compare the convergence speed of different optimization methods carried
out in Case Study I, we plot their convergence curves i.e., the fitness function values versus
the iteration numbers. Figure 5.12 shows the convergence curve of LM, PSO, DE MH, and
SA algorithms averaged over 100 runs. It can be observe that although the fitness function
values in the all methods finally converge to a same minimum, the LM algorithm shows the
fastest convergence speed than the other algorithms. The PSO method is the second fastest one,
whereas the DE method has a faster convergence compare to the MH and SA algorithms. In
addition, we observe that in SA algorithm, after a fluctuating period, when the temperature is
reduced toward zero, the fitness function converge to the minimum value in a damping manner.
In contrast, in MH method, the the fitness function keep oscillating around the minimum value.
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Figure 5.13. Estimating the parameter values of a stochastic linear delay differential equation
(Case Study II) from a set of in silico data. Shown are the estimated power spectrum (dashed
green line) versus the corresponding noise-free signal (blue line) and the noisy measured data
(dashed red line). In addition, the grey shaded area represents the 95% confidence interval.
The true and estimated parameters are pII = (κ, a, b, τ) = (0.1 mV,−17.3,−21.32, 0.2), and
p∗II = (κ, a, b, τ) = (0.103 mV,−18.4,−21.49, 0.2), respectively.

In Case Study II, the power spectrum of a stochastic linear delay differential equation is fitted
to a set of pseudo-experimental data. This case study poses a multimodal objective function,
which is more challenging problem in optimization compare to Case Study I as an example of
unimodal functions. Figure 5.13 demonstrates the estimated power spectrum from the respective
noisy measured signal, which is obtained by the PSO algorithm. It can be seen that the con-
structed spectrum is very close to the true signal. Here, the noise-free power is obtained by sub-
stituting the true parameters pII = (κ, a, b, τ) = (0.1 mV,−17.3,−21.32, 0.2) in Eq. (5.36). The
fitted signal yields the optimal parameters p∗II = (κ, a, b, τ) = (0.103 mV,−18.4,−21.49, 0.2),
which allow us to reproduce almost exactly the measured signal. The fitness function of this
estimation is E(p∗II) = 32.15, which is the best value obtained through 100 runs.
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Figure 5.14. The elliptical and likelihood confidence regions at the 95% confidence level for
each pair of the estimated parameters in Case Study II. The ellipsoids are calculated with
FIM (in dashed red) and Hessian (in green) matrices, whereas the likelihood confidence re-
gions (in blue) are produced by PSO algorithm. The estimated parameters p∗II = (κ, a, b, τ) =
(0.103 mV,−18.4,−21.49, 0.2) encoded by filled red circles are located at the center of confidence
regions.

Fig 5.14 displays the confidence regions for all possible pairs of the estimated parameters
in Case Study II. Similar to Case Study I, the elliptical confidence regions are calculated by
covariance matrix estimation according to Eqs. 5.24, and 5.26, whereas the likelihood confidence
regions are provided by PSO method according to Eq. (5.27). It can be seen that the ellipsoids
constructed with covariance matrix estimation using FIM or Hessian matrix coincide, because
in this case study J(p∗)>WJ(p∗) = 2H(p∗). However, comparing the elliptical and likelihood
confidence regions, we observe that when one of the estimated parameters is either parameter a,
or b, the regions evaluated based on covariance matrix are different from those computed through
the PSO method.
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In order to identify the origin of discrepancy between elliptical and likelihood confidence
regions in Case Study II (c.f. Fig. 5.14, we investigate the correlation among the model pa-
rameters. In Fig. 5.15, we have plotted the correlation matrix of the model parameters in this
case study. If two parameters are highly correlated, the change in the model output caused by
a change in one parameter can be compensated by an appropriate change in the other param-
eter. This prevents the parameters from being uniquely identifiable. In other words, for a pair
of correlated parameters there exist many combinations which give almost the same value of
the fitness function. Based on the observation of Fig. 5.15, the parameters a and b are prac-
tically non-identifiable since they are highly correlated, whereas other pairs of parameters are
uncorrelated. To overcome such problem, the pairs of correlated parameters must be removed
analytically by introduction of new variables. In this case study, setting a candidate solution in
the form of y(t) = Ceλt yields the following nonlinear transcendental characteristic equation:

λ− a− be−λτ = 0,

where, by inserting λ = iω, and separating the real and imaginary parts we obtain

a = −b cos(ωτ),
ω = −b sin(ωτ),

(5.52)

or equivalently,
a = ω/tan(ωτ),
b = −ω/sin(ωτ).

(5.53)

where ω = 2πΩ. Thus, introducing the parameter Ω according to the above equations, leads to a
model equation containing three unknown parameters: κ, Ω, τ , in which the plotted correlation
matrix in this case reveal no correlation among the parameters (not shown). As it is shown in Fig.
5.16, using this set of uncorrelated parameters, the elliptical confidence regions coincide exactly
with the likelihood-based regions. These results indicate a precise estimation with uniquely
identifiable estimates. Here, to compute the confidence regions of the model parameters we
employed the same approach as used in Fig. 5.14.

119



Chapter 5. Spectral power fitting using stochastic optimization algorithms

κ a b τ

κ

a

b

τ

Figure 5.15. Correlation matrix in Case Study II; power spectral fitting of a stochastic linear
delay differential equation to a set of noisy pseudo-experimental data. The estimated parameters
are κ, a, b, and τ .

Figure 5.16. The elliptical and likelihood confidence regions in Case Study II with the un-
correlated parameters κ, Ω, and τ . The regions are centered at the estimated parameters
p∗II = (κ,Ω, τ) = (0.103 mV, 1.99, 0.2), whereas the true parameters are pII = (κ,Ω, τ) =
(0.1 mV, 2, 0.2).
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Figure 5.17. Sensitivity analysis in Case Study II; power spectral fitting of a stochastic linear
delay differential equation to a set of in silico data. Panels (A), (B), and (C) show the plotted
fitness function versus the model parameters κ, Ω, and τ , respectively. In each panel, the
estimated parameters p∗II = (κ,Ω, τ) = (0.103 mV, 1.99, 0.2) are illustrated by the red squares.
(D) The sensitivity of the fitness function to the model parameters measured through the Hessian
matrix according to Eq. (5.29).

Here we investigate the sensitivity of the fitness function to the estimated parameters in Case
Study II. In Fig. 5.17, the panels A, B, and C show the landscape of fitness function with respect
to the parameters κ, Ω, and τ , respectively. It can be seen that the fitness function exhibits
a sharp valley around the delay optimal values (c.f. panel C), while there are multiple local
minima close to the global solution. In contrast, the fitness landscape is very flat around the
optimal value of Ω compare to the other parameters (c.f. panel B). Moreover, panel D shows
the sensitivity values measured by the Hessian matrix according to Eq. (5.29). We observe
that in consistent with the plotted landscapes, the fitness function of this case study is much
more sensitive to the delay values than to the other parameters, whereas it is less sensitive to
the parameter Ω. In order to confirm these results, in Fig. 5.18, for each model parameter, we

have plotted the normalized fitness function defined by
1

E(p)/E(p∗)
. In each panel A, B, and

C a Gaussian distribution with the mean value located at the optimal values and an unknowing
standard deviation of σ is fitted to the normalized fitness function. The values of the measured
standard deviations are illustrated in panel D. It can be observed that in consistence with the
sensitivity analysis shown in Fig. 5.17, the fitness function is more sensitive to parameter τ ,
whereas the parameter Ω has the lowest sensitivity index.
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Figure 5.18. Sensitivity analysis measured by fitting a Gaussian distribution to the normalized
fitness function in Case Study II. Panels (A), (B), and (C) show the normalized fitness function

defined by
1

E(p)/E(p∗)
respect to the model parameters κ, Ω, and τ , respectively. The estimated

parameters p∗II = (κ,Ω, τ) = (0.103 mV, 1.99, 0.2) are illustrated by the filled green circles. In
each panel, a Gaussian distribution with the mean value at p∗I , and an unknowing standard
deviation of σ is fitted to the normalized fitness function (dashed red lines). (D) The measured
standard deviation of the fitted Gaussian distributions i.e., σκ, σΩ, and στ .
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Figure 5.19. Comparing the performance of different optimization algorithms through 100
independent runs in Case Study II. The red bars indicate the histogram of obtained fitness
function by the applied algorithm. The average of running time for the algorithms are shown by
green bars. For clarity reasons, the results are also reported in Table 5.1.

Finally, for this case study, we compare the performance of different optimization algorithm
presented in section 5.3, i.e., LM, PSO, DE, MH, and SA. For the sake of fair comparison, each
optimization algorithm has been ran 100 times with each run executed for 10000 iterations. The
initial guesses in the LM, MH, and SA algorithms were created randomly within the parameter
search space to have an identical starting condition with the PSO and DE methods. The param-
eter search space was limited in the range [0,20] for each parameter. The results for 100 runs are
reported in Fig. 5.19 and Table 5.1. Based on these results it can be observed that the PSO,
DE, MH and SA methods succeeded in finding the global minimum in 100, 80, 18, and 33 times
out of 100 runs, respectively, as indicated by the number of counts of the best fitness value in
Table 5.1. However, the LM algorithm as a local optimization search method fails to arrive at
the global minimum. If we compare these algorithms, the results obtained with the PSO and
DE significantly outperformed the achieved results via LM, MH and SA algorithms. In addition,
the PSO delivers better solutions than the DE method, and the SA algorithms outperform the
MH method.

Furthermore, for each algorithm, the best value of fitness function, its mean value and the
average of running time are listed in Table 5.1. According to these results, although LM method
shows the fastest convergence speed, it can not find the global minimum since it get easily stuck
at a local minimum. In contrast, although the PSO and DE methods reveal a high computational
costs, they show very better performance in finding the better solutions. The simulation results
show that although both the PSO and DE algorithms are competitive in finding the global
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minimum, the convergence speed of PSO is slightly better than the DE algorithm, and the SA
algorithms is faster than the MH method.

Our findings, in agreement with the results in other reports, show that although the local
search algorithms converge rapidly on a minimum, they can arrive at the global minimum only if
the algorithm starts with an initial guess of the parameters at the vicinity of the global minimum.

Table 5.1. Comparing the results obtained by different optimization algorithms achieved from
100 independent runs in Case Study II. The best values of fitness function (minimum), the related
counts, its minimum value and the average of computational time (in second) for each algorithm
are illustated in the table.

Algorithm Minimum Counts Mean Compuational time (Sec)

PSO 32.15 100 33.15 433.83

DE 33.20 80 147.95 498.76

MH 37.77 18 1484.2 28.54

SA 33.50 33 1065.1 19.01

LM 670 100 670 2.31
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The first two case studies were designed with the measured in silico data. In the following
we identify the parameters of the third case study; estimating the parameters of a thalamo-
cortical model described by a set of coupled stochastic delay differential equations through the
model spectral fitting to the in vivo experimental data. This model which has been referred to
it as a reduced thalamo-cortical model in [37], is able to reproduce the specific changes in EEG
rhythms during the transition from awake state to anesthesia condition; increased activities in
power spectrum of frontal EEG within delta (0 − 4Hz) and alpha (8 − 13) frequency bands,
but increased delta and decreased alpha activities in EEG spectral power recorded over occipital
head region. See section 5.5.3, for the details of the model.

In Fig. 5.20 the power spectrum of the model given by Eq. (5.40) is fitted to the power
spectra of EEG recorded over frontal and occipital head regions during awake and anesthesia
conditions. From the figure, it can be seen that a close prediction of the observed certain features
in experimental data can been achieved by fitting the proposed model with the PSO algorithm.

It is important to point out that in most of the cases, by using a standard fitness function
defined by the discrepancy between the models output and the measured data we are not able
to fit the spectral power peak observed in delta frequency range (c.f. panels A, B, and D).
However, since the delta peak is one of the most important observed specific EEG features, we
employed a biased chi-squared function according to Eq. (5.6) in order to fit the model with the
spectral power peak in this range. Taking a biased the fitness function with more weight value
in delta frequency band the model output is forced to be fitted with the observed spectral power
peaks. For instance, in panel A, we set c1 = 20, c2 = 1, c3 = 10, c4 = 1 to fit the model with the
observed delta peak. It is trivial that c1 = c2 = c3 = c4 = 1 results in the standard chi-squared
function (as used in panel C).

Fitting the spectral power given by Eq. (5.40) to the power spectrum of occipital EEG in
awake state shown in Fig. 5.20A yields the estimates p∗III = (27.02, 0.04, 69.10, 8.99, 0.68,
0.45, 0.13). Here, for this case study, we measure the sensitivity of the fitness function to the
estimated parameters. Figure 5.21 presents the plotted fitness function versus the model param-
eters over a range of values while the other parameters are fixed at their estimated values. The
sensitivity of the fitness function are also computed through the Hessian matrix according to Eq.
(5.29). It can be seen that the fitness function in this case study is dramatically more sensitive
to the delay values τ than to the other parameters. In this panel, since the sensitivity index for
delay values is very large, we can not compare the other indices. For illustration reason, we have
shown them in Fig. 5.22A. Moreover, for a comparison, the the sensitivity elements computed
by fitting Gaussian distributions to the normalized fitness function for each model parameters are
illustrated in 5.22B. In both panels, we observe that the fitness function is much more sensitive
to the gain parameters C1, C2, and C3 compare to the other parameters D, βe, and βi.
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Figure 5.20. Fitting a reduced thalamo-cortical model to the EEG power spectra in awake and
anesthesia conditions using PSO algorithm. The recorded EEG spectral power are shown by
dashed red lines, whereas the fitted spectral power are encoded in the solid lines. Panels (A) and
(B) illustrate the recorded EEG spectral power over occipital head region in awake and anesthesia
conditions, respectively. The frontal EEG spectral power in awake and anesthesia conditions are
displayed in panels (C) and (D), respectively. The fitted spectra using standard chi-squared
function are illustrated by green lines whereas those obtained by the biased chi-squared function
according to Eq. (5.6) are shown in blue lines.
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Figure 5.21. Sensitivity of fitness function in fitting a reduced thalamo-cortical
model to the EEG spectral power. Shown are the plotted fitness function versus the
model parameters pIII = (D, τ, βe, βi, C1, C2, C3). The estimated parameters p∗III =
(27.02, 0.04, 69.10, 8.99, 0.68, 0.45, 0.13) are illustrated by red squares. The lowest panel in right
show the sensitivity of the fitness function to model parameters measured through the Hessian
matrix.
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Figure 5.22. Sensitivity of the reduced thalamo-cortical model to its model parameter. (A)
The sensitivity elements computed through the Hessian matrix. (B) Each sensitivity index is
the standard deviation of the Gaussian distribution fitted to the normalized fitness function for
the corresponding parameters.

In the following, in order to survey more measurements, the model is fitted to the EEG
spectral power of 8 patients recorded during pre- and post-incision anesthesia states induced
by Desflurane and Propofol, as shown in Figs. 5.23 and 5.24 respectively. In these figures we
also observe that in the delta (0 − 4Hz) and alpha (8 − 13Hz) frequency bands, the model
fits the measured data very well. These results indicate that the considered thalamo-cortical
model in this study is able to reproduce the specific features observed in EEG spectral power
data adequately. The values of the estimated parameters are listed in Table 5.2. In addition,
the values of pre-factors c1, c2, c3, and c4 accompanied with the values of the obtained fitness
function for these estimations are listed in Table 5.3.
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Figure 5.23. Fitting a reduced thalamo-cortical model to the EEG spectral power in pre-
and post-incision anesthesia condition induced by Desflurane. The recorded EEG data for four
patients are shown by the dashed red lines, whereas the corresponding fitted model are illustrated
in solid lines. (A) The recorded EEG spectral power in pre-incision condition and the fitted model
are shown in the dashed red and solid blue lines, respectively. (B) Shown are the EEG power
spectra recorded in post-incision condition and the fitted model encoded in dashed green and
solid black lines, respectively.

5.7 Discussion

In a great variety of scientific fields, stochastic differential equations arise naturally in the mod-
eling of systems subjected to random forcing or other noisy input. Numerical integration of dif-
ferential equations is a major time consuming problem in the parameter estimation of nonlinear
dynamics in biological systems. It has been shown that decoupling strategy (slope approxima-
tion) which consider the derivative values of system state variables avoids numerical integration
altogether by fitting models to the slope of time-series data [450, 451]. However, this technique
is not applicable in most of optimization problems. For instance, if an equation is affected by a
state variable for which there is no data available for it, then the decoupling technique can not be
applied to that equation. Moreover, this strategy can not provide a model readily applicable to
the computational simulation when the given time-series data contain measurement errors [452].

In another work, a modified collocation approximation technique has been proposed to con-
vert differential equations into a set of algebraic equations [339]. This method has the obvious
advantage of avoiding numerical integration of differential equations. They have shown that their
method yields accurate parameter estimation for S-system models of genetic networks which also
save a lot of computational time. However, such an approximation can not be generally employed
in the complex nonlinear inverse problems. To the best of our knowledge, in the previous studies
investigating parameter estimation in the context of biological systems while the experimental
data are noisy, the additive noise term in the system equations have been neglected. In the
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Figure 5.24. Fitting a reduced thalamo-cortical model to the EEG power spectra in pre-
and post-incision conditions during the propofol anesthesia. The recorded EEG spectral power
and the corresponding fitted model for four patients are shown in the dashed and solid lines,
respectively. Panels (A) and (B) display pre- and post-incision states, respectively.

estimation technique presented in this work, by the aid of Green’s function method, we can
easily compute the power spectrum of a system whose dynamics are governed by a set of coupled
stochastic ordinary or delay differential equations. By fitting the computed spectral power to the
corresponding measurements, we can estimate the model parameters without solving the model
equations which dramatically reduces the computational time burden. Although evolutionary
algorithms such as PSO and DE need a high number of function evaluations, they are able to
provide accurate parameter estimates while using spectral power fitting technique, their high
computational costs can be compensated for. Furthermore, POS algorithm has this advantage
that during the optimization process we can use the performed functional evaluations to con-
struct the confidence regions of the estimated parameters in a reliable manner (see Figs. 5.6 and
5.16).

In recent years, optimization algorithms has received a great deal of attention in particular
to solve the estimation problems. An important conclusion that can be drawn from iur results is
that not only the search algorithm, but also the formulation of fitness function plays a decisive
role in reproducing the key features of the measured data. We showed that using the standard
least squares function the model fails to be fitted with the spectral power peak observed in delta
frequency band. However, by adding more weights to the fitness function in certain frequency
bands than the others, we are able to fit the model in those interested ranges (c.f. Fig 5.20).

In this work, for unimodal and multimodal optimization (Case Study I and Case Study
II, respectively), we compared the performance of LM as a local search algorithm to that of
well-known EAs including GA (not shown) PSO, DE, MH, and SA (see Figs. 5.12, and 5.19).
Our results showed that LM algorithm as a local search method converge rapidly, but to a
local minimum. In contrast, although global search algorithms such as PSO and DE algorithms
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Table 5.2. Estimated values of parameters of the thalamo-cortical model given by Eq. (5.40)
obtained by fitting to the EEG spectral power during pre- and post-incision anesthesia states
induced by Desflurane and Propofol.

Parameters
patient # D τ βe βi C1 C2 C3

Anesthesia
induced by
Desflurane

Pre-incision

1 37.54 0.031 31.83 16.58 1.70 2.98 0.10

2 25.74 0.028 72.04 19.40 0.90 0.45 0.38

3 23.91 0.033 36.85 12.33 1.03 1.33 0.11

4 19.88 0.036 54.85 29.54 0.61 0.1 0.57

Post-incision

1 22.95 0.033 47.38 15.59 0.96 1.33 0.12

2 21.93 0.031 73.09 13.62 0.64 0.50 0.11

3 35.62 0.028 30.74 14.66 1.85 2.98 0.14

4 34.25 0.030 34.99 13.16 1.24 1.89 0.10

Anesthesia
induced by
Propofol

Pre-incision

1 50.91 0.028 27.62 12.55 2.29 3.68 0.11

2 107.18 0.031 23.94 22.76 2.68 1.92 2.76

3 146.65 0.031 19.27 10.95 2.89 6.82 0.11

4 164.16 0.026 15.63 13.36 5.04 9.24 1.90

Post-incision

1 79.08 0.028 20.04 19.37 3.07 3.71 1.88

2 61.56 0.032 33.56 32.43 1.88 1.09 1.48

3 110.95 0.031 22.49 12.02 1.99 5.43 0.14

4 50.27 0.028 31.65 15.24 1.77 2.97 0.12

need a high number of fitness function evaluations, they are able to find the global minimum
independent of the initial values of the parameters. More precisely, for unimodal optimization
problems, LM method can converge rapidly to the global solution. However, in the case of
multimodal optimization problems it fails to converge at the global minimum unless it starts
with an initial guess very close to the global solution. Our results (c.f. Fig. 5.19) indicate that
in the case of multimodal objective function, the meta-heuristic methods such as PSO and DE
significantly outperform the other algorithms in finding the global solution.

For each parameter estimation problem, we also employed the practical identifiability analy-
sis to check the reliability of the estimates. The identifiability analysis in this study comprised
of building the Fisher information matrix (FIM) to compute the sensitivity and the correlation
matrices, in addition to plotting the confidence regions for estimated parameters, as described
in section 5.4. In the current work, we illustrated that the identifiability analysis can be eas-
ily exploited by plotting the confidence regions. For instance, the confidence regions obtained
through Hessian and FIM approaches were compared in Figs. 5.6. and 5.16. By virtue of the
the conceptual difference of these approaches in the derivative terms, the exact coincidence of
the ellipsoids obtained by Hessian and FIM methods indicates that the estimated parameters
are uniquely identifiable and we were able to obtain reliable estimates [436]. Furthermore, by
measuring the sensitivity values, we can investigate how the system output will change in the
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Table 5.3. The pre-factors c1, c2, c3, and c4 in the biased chi-squared function defined by Eq.
(5.6), accompanied with the values of the obtained fitness function (χ2) for the estimates shown
in Figs. 5.23 and 5.24.

Pre-factors
patient # c1 c2 c3 c4 χ2

Anesthesia
induced by
Desflurane

Pre-incision

1 200 1 30 1 6.00

2 100 1 50 1 17.31

3 20 1 30 1 6.61

4 20 1 50 1 13.69

Post-incision

1 50 1 30 1 3.68

2 100 1 50 1 2.76

3 20 1 30 1 4.01

4 30 1 20 1 9.50

Anesthesia
induced by
Propofol

Pre-incision

1 10 1 10 1 3.68

2 20 1 10 1 2.76

3 20 1 10 1 4.01

4 100 1 100 1 9.50

Post-incision

1 10 1 10 1 1.18

2 20 1 10 1 3.56

3 30 1 20 1 4.93

4 100 1 1 100 7.65

response to small modification in the model parameters [64, 55]. This allows us to find out which
model parameters play a decisive role in the model behaviors. A high sensitivity index for a
parameter shows that the small changes on that parameter cause a strong response in the model
output. This indicates that the parameters with higher sensitivity values are more identifiable
than those parameters with low sensitivity indices, c.f. Figs. 5.10 and 5.17. The correlation plots
also provide us information about the parameter identifiability. The lack of correlation among
the estimated parameters reveals that the parameters are identifiable, as shown in Fig. 5.9 for
the first case study. On the contrary, the highly correlated parameters are not identifiable since
there exists many combinations of them that lead to an identical fitness value, c.f. Fig. 5.15 for
the second case study. The high correlation between parameters can also cause a discrepancy
between the elliptical and likelihood-based confidence regions, as illustrated in Fig. 5.14. To
surmount this problem, the pairs of correlated parameters must be removed by introduction of
new variables.

Up to now, a few studies have investigated the parameter estimation problems in the context
of neural population modeling, which is a well-tried method to reproduce the measured EEG
data during different behavioral states. To our best knowledge, this is the first study that
using some analytical constrains for the system stability, a thalamo-cortical model is fitted to
EEG spectral power peaks observed in both delta and alpha frequency ranges. A pioneer study
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by Bojak & Liley [24] fitted a neural population model comprising excitatory and inhibitory
cortical neurons to a set of pseudo-experimental data. In another study, Rowe et al. [32] have
estimated the values of key neurophysiological parameters by fitting the model’s spectrum to
EEG spectra of 100 subjects in awake eyes-closed and eyes-open states. Although Rowe et
al. have achieved close predictions to the measured data, their data do not exhibit a spectral
power peak in delta frequency range. Moreover, while they have used LM method which require
initial guess for the parameters, the parameters that do not impact on the variance of data
have been fixed at constant values. For instance, they have held the ratio of synaptic rise
rate to the corresponding decay rate at a fixed value. Their work has also concentrated on
excitatory quantities by slaving the potential of cortical inhibitory population to that of the
excitatory population. They have assumed that cortico-cortical connectivities are proportional
to the numbers of synapses involved (Kee = Kie, Kei = Kii) and cortical populations have a same
firing rate functions (S(Ve) = S(Vi)), which results in an identical mean potential for excitatory
and inhibitory cortical populations (Ve = Vi). In a similar approach, VanAlbada et al. [206]
have fitted the Robinson model [29, 30] to eyes-closed EEG spectra of a large number of subjects
to probe the age-associated changes in the physiologically model’s parameters. Their findings
suggest that the inverse modeling of EEG spectral power is a reliable and non-invasive method
for investigating large-scale dynamics, which allows us to extract physiological information from
EEG spectra. In line with this work, the data-driven approach presented in the current study
provides us a proper guidance for fitting the thalamo-cortical model to a large set of experimental
recordings. This enable us to investigate the parameter changes during the transition from awake
to anesthesia state, especially those parameters that can not be measured directly. Inferring the
parameter changes associated to the changes in brain activities from model fitting to a large data
set remains to be investigated in future work.

A key finding of our data-based analysis in fitting a thalamo-cortical model to the EEG
spectra is that the model is heavily sensitive to the delay transmission in the system (c.f. Fig.
5.21), This is in agreement with previous studies suggesting that the location of spectral power
peaks especially in alpha frequency range strngly depends to the delay values in the thalamo-
cortical circuits [29, 30, 32, 35]. Considering this finding that time delay plays a critical role in
determining the spectral power peaks can provide a basis for the reproduction of some certain
features in experimental data seen at high concentration of anesthetics. For instance, if we aim to
reproduce the beta power surging observed in EEG power spectrum close to loss of consciousness,
we might put forward this hypothesis that the peaks shift in EEG spectra can be reproduced by
considering the effect of anesthetics on the axonal transmission delay. However, this effect needs
more experimental evidences.

In the last years, Kalman filtering is receiving increased attention for solving the parame-
ter estimation problems [453, 454, 455]. Recently, Lillacci & Khammash [56] have proposed a
new hybrid extended Kalman filtering algorithm to estimate parameters in stochastic models
of biological systems from noisy and sparse measurements. Their approach can also be used
to select a model among different candidate models of the same biological process. However,
these methods based on Kalman filtering need an initial guess of the parameters to start and the
filter may diverge if it is not initialized with good estimates. The choice of the initial covariance
matrices plays a crucial role in ensuring convergence of the filter. Furthermore, the statistics
of the process noise as well as the measurement noise are assumed to be known and the filter
may give biased estimates or produce unreliable estimates [456]. Comparing the performance of
evolutionary algorithms with Kalman filtering is beyond the scope of the present study and it
would be the aim of future work.

In a recent study, Rodriguez-Fernandez et al. [55] have proposed a mixed-integer nonlinear
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optimization approach that discriminates a model among a subset of nested models and simulta-
neously estimate the model parameters in a single step. Although their method shows promising
results, the proposed strategy requires the gradient information of the model which it is impos-
sible to utilize in those cases that we face to non-differentiable functions. Moreover, since their
proposed method is based on iteratively refinement of the a prior knowledge of the system, in
the case of large-scale models the computational effort needed to find satisfactory results might
become prohibitive. Most of previous modeling studies have described the EEG spectra by con-
sidering the thalamo-cortical loops [186, 29, 30, 35, 36, 37] or even by purely cortical interactions
[39, 40, 28]. The reduced model considered in the this work was sufficient to generate the specific
features observed in the EEG rhythms, while its low dimensionality allows us to obtain some
inequality conditions for the stability of the system (see Figs. 5.23, and 5.24). It is important
to note that the analytical constrains shrink the parameter space which facilitates the global
exploration ability (searching new areas). In addition, using a model with too many parameters
increases the fitting errors, which leads to an inability to obtain accurate estimates. Our pre-
liminary simulations (not shown) demonstrate that using a more complex model with additional
parameters, it is very challenging to capture key features of the EEG rhythms. Comparing dif-
ferent topological configurations for the thalamo-cortical model fitted to the EEG spectral power
was not aimed in the current study. The future work aims to compare different candidate models
to reveal the optimal topology that is able to reproduce the observed characteristic features in
experimental data in the best possible way.

5.8 Conclusion

The results obtained in the present work reveal that given a set of stochastic ordinary or delay
differential equations and a set of experimental data, by the aid of Green’s function method
and evolutionary algorithms such as PSO and DE, we are able to fit the model power spectrum
to the related data with a high accuracy and very low computational costs. We demonstrated
that in multimodal optimization problems with a large number of local minima, the local search
methods such as LM algorithm fails to arrive at the global solution, and therefore the use of a
global optimization approach such as PSO or DE is required in order to accurately estimate the
model parameters. Our analyses indicate that we can employ a data-driven approach to provide
new valuable insights into the mechanisms underlying the behavior of complex systems. This
approach will provide an appropriate guidance in future brain experiments to better understand
different behavioral activities.
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In this thesis we used a modeling approach to understand the mechanisms underlying propofol
sedation. To this end, we employed mean field approximation to reach more precise elucidation
of physiological mechanisms. This study investigated the construction and performance of mean
field thalamo-cortical models for the effects of anesthetic propofol on EEG signals. The models
used in this study include excitatory and inhibitory cortical populations that are synaptically
connected to thalamic reticular and relay neuron populations by delayed thalamo-cortical ax-
onal fibres. In addition, they incorporate the propofol actions at synaptic and extra-synaptic
inhibitory GABAergic receptors in both cortical inhibitory neurons and thalamic relay cells.
Although mean field models cannot describe the certain anesthetic effects at the single neuron
properties such as action potentials or ion currents, they provide us a well-suited link between
the molecular actions of anesthetics at microscopic level and the changes in EEG and behavior
that can be observed at macroscopic scales. The general advantage of mean field models over
network models is that such models require only a small number of parameters, and thereby
they are more tractable than detailed biophysical modeling of synapses and spiking neurons,
both numerically and analytically. Our simulation results were in qualitative and quantitative
agreement with the empirical observations. The results showed that a population-level model of
thalamo-cortical system is able to successfully reproduce the certain spectral changes observed
experimentally within the δ− and α−frequency bands. In consistent with previous theoretical
studies using neural field models, this study indicate that mean field description is a plausible
candidate for investigating the mechanisms responsible for the various features observed in EEG
data.

We also revealed the impact of propofol concentration on the resting states of the system.
The linear stability analysis of the model equations showed that the propofol-induced changes in
the system resting states play a deceive role in generation of key EEG signatures, in particular
within the α−frequency range. Our findings indicated that propofol concentration acts as a
control parameter of the system in such a way that the propofol-induced changes in the system
resting states lead to changes in the corresponding nonlinear gain functions that in turn result
in the EEG power modulations. Typically the sigmoidal shape of the transfer function leads to
multiple resting states. In this study, the models exhibited two stable resting states which are
separated by an unstable state. As the concentration of propofol increases, dependent on the
potential values of the resting states, it causes an increase or decrease in the gain functions within
the thalamo-cortical loops what then results in an increase or decrease in the spectral power in
the α−frequency band; the increase in the frontal α−power can be caused by an increase in the
gain function of thalamo-cortical network, whereas the decrease in the α−power over occipital
area results from a decrease in the thalamo-cortical gain functions. Therefore, considerable
care is required when we interpret the role of cortical and thalamic inhibitions in generation of
the observed certain changes in EEG signals during propofol-induced sedation. For instance,
in chapter 3 we concluded that the cortical inhibition plays a critical role in reproducing the
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characteristic features of frontal EEG rhythms observed experimentally. However, in chapter 4 we
stressed the importance of thalamic inhibition for neural effects under anesthesia sedation, since
the results illustrated that the specific observed changes in EEG rhythms can be reproduced with
and without the propofol effect in cortical cells. Although these results may seem inconsistent
initially, a careful look at the values of system resting states reveals a common mechanism. To
reveal this mechanism, it is critical to note that the model equations are linearized about which
resting state. In chapter 3, we linearized the system equations about the lower resting state.
In this situation, the cortical inhibition is necessary to be taken into account in order to obtain
an increase in the gain functions and consequently an increase in the power of α−activity. In
contrast, the system equations of the model used in chapter 4 were linearized about the upper
resting state to generate the α−power enhancement. In this situation, it is possible to reproduce
the α−power surge with and without the propofol effect in cortical cells. Note that, when the
system is lying on the lower resting state, stronger inhibition in the thalamus compared to the
cortex or considering only the thalamic inhibition results in a decrease in the gain functions
and thereby a decrease in the α−band power activity. Therefore, neglecting inhibitory action
in the cortex but considering thalamic GABAergic action suffices to reproduce an increase or
decrease in the α−power when the system equations are linearized about the upper or lower
resting state, respectively. However, if we aim to reproduce the enhanced α−power activity
by system linearization about the lower resting state, it is necessary to take into account the
cortical inhibition. Taken together, our results suggest a common mechanism for the α−power
modulations during propofol-induced sedation: dependent on the mean potential values of the
system resting states, an increase or decrease in the gain functions within the thalamo-cortical
circuits results in an increase or decrease in the spectral power in the α−band activity.

In this study, our major aim was to understand the mechanisms that produce the certain
power modulations in δ− and α−frequency ranges observed during propofol-induced sedation. To
this end, we used topology manipulations to identify the contribution of model populations and
the system sub-circuits to generation of δ− and α−power activities. A key finding of this work
is that the origin of the δ−rhythm is fundamentally different from the α−rhythm. Our detailed
analysis revealed that strong α−power originates from the cortico-thalamic relay interaction,
which is associated with a constant time delay around the inverse of peak frequency within the
α−frequency range. This finding supports this hypothesis that the α−activity results from an
interaction between two brain structures rather than being generated in single area. As mentioned
above, increasing nonlinear gain functions within this loop induces a power surge in the α−range,
whereas decreasing thalamo-cortical gain functions diminishes the α−power. This is in line with
the cortical activation hypothesis, which states that an increase or decrease in the firing rates of
cortical pyramidal neurons leads to an increase or decrease in α−power activity, respectively. In
contrast, the evolution of the δ−power is rather independent of the system resting states, and
increases for increasing propofol concentrations for both increasing and decreasing nonlinear gain
functions. Our results indicated that the strong δ−power occurs primarily when there is a strong
connections from cortex to the reticular nucleus, reticular to relay nucleus and relay to cortex.
We showed that the emergence of δ−power during anesthesia results from the increased synaptic
or extra-synaptic GABAergic inhibition, either in the cortex or in the thalamus. This finding
suggests that the level of inhibition plays an important role in generation of δ−waves while its
origin, i.e. synaptic or extra-synaptic, plays a secondary role. In consistent with in vitro studies,
this result implies that both the thalamus and the cortex are capable of inherently generating
δ−rhythm. However, it remains challenging to determine whether δ−waves have several sources
or arise from single brain region.

The aim of second elaboration of this thesis was to identify the parameters of a thalamo-
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cortical model by fitting the model power spectrum to the EEG recordings. To this end, we
addressed the task of parameter estimation in the models that are described by a set of stochas-
tic ordinary or delay differential equations. In three case studies, the model spectral power was
fitted to the measured data by using different optimization algorithms namely LM, PSO, DE,
MCMC and SA. We carried out two case studies dealing with noisy pseudo-experimental data
to compare the performance of employed optimization methods. Our results demonstrated that
in the case of multimodal optimization problems, which are more challenging to solve compared
to the unimodal cases, the bio-inspired meta-heuristic methods such as PSO and DE signifi-
cantly outperform the other algorithms whereas the gradient-based LM fails to converge at the
global minimum. Following this part, the results of third case study illustrated that the reduced
thalamo-cortical model neglecting cortical inhibition fits very well to the power spectra of EEG
recordings, particularly to the spectral power peaks observed in δ− and α−frequency ranges.
The low dimensionality of the model allowed us to derive some inequality conditions for the sta-
bility of the system, which reduce the parameter searching space and thereby greatly facilitate
the nonlinear estimation problem. In addition, for each considered case study, we investigated
the practical identifiability of the model parameters by plotting the confidence regions of the
estimates. The correlation and sensitivity matrices were also analyzed to assess the accuracy of
the estimated parameter. Our results show that the method used in this study is able to accu-
rately estimate the independent model parameters while it allows us to avoid the computational
costs of the numerical integrations. Moreover, the results imply that the parameter estimation
as a crucial step in model building of biological systems allows us to gain further insights into
the mechanisms of the system under study.

This thesis focused on the sedation level of anesthesia and the mechanisms that produce
additional spectral EEG features such as β−power surge and burst suppression patterns which
emerge at high concentration of anesthetics remain to be investigated in the future work. Fur-
thermore, a future work will compare the performance of evolutionary algorithms used in this
work with other estimation methods such as Kalman filter and its variations. We will also aim to
investigate the structural identifiability (model selection practice) in order to identify the optimal
mean field model among a set of different model candidates. The approach used in this thesis
could be applied in the future works to achieve these goals.
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